直接向小鼠背根神经节 (DRG) 注射,分析腺相关病毒 (AAV) 基因向外周躯体感觉神经元的转移。

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Michael O’Donnell , Arjun Fontaine , John Caldwell , Richard Weir
{"title":"直接向小鼠背根神经节 (DRG) 注射,分析腺相关病毒 (AAV) 基因向外周躯体感觉神经元的转移。","authors":"Michael O’Donnell ,&nbsp;Arjun Fontaine ,&nbsp;John Caldwell ,&nbsp;Richard Weir","doi":"10.1016/j.jneumeth.2024.110268","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Delivering optogenetic genes to the peripheral sensory nervous system provides an efficient approach to study and treat neurological disorders and offers the potential to reintroduce sensory feedback to prostheses users and those who have incurred other neuropathies. Adeno-associated viral (AAV) vectors are a common method of gene delivery due to efficiency of gene transfer and minimal toxicity. AAVs are capable of being designed to target specific tissues, with transduction efficacy determined through the combination of serotype and genetic promoter selection, as well as location of vector administration. The dorsal root ganglia (DRGs) are collections of cell bodies of sensory neurons which project from the periphery to the central nervous system (CNS). The anatomical make-up of DRGs make them an ideal injection location to target the somatosensory neurons in the peripheral nervous system (PNS).</p></div><div><h3>Comparison to existing methods</h3><p>Previous studies have detailed methods of direct DRG injection in rats and dorsal horn injection in mice, however, due to the size and anatomical differences between rats and strains of mice, there is only one other published method for AAV injection into murine DRGs for transduction of peripheral sensory neurons using a different methodology.</p></div><div><h3>New Method/Results</h3><p>Here, we detail the necessary materials and methods required to inject AAVs into the L3 and L4 DRGs of mice, as well as how to harvest the sciatic nerve and L3/L4 DRGs for analysis. This methodology results in optogenetic expression in both the L3/L4 DRGs and sciatic nerve and can be adapted to inject any DRG.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"411 ","pages":"Article 110268"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct dorsal root ganglia (DRG) injection in mice for analysis of adeno-associated viral (AAV) gene transfer to peripheral somatosensory neurons\",\"authors\":\"Michael O’Donnell ,&nbsp;Arjun Fontaine ,&nbsp;John Caldwell ,&nbsp;Richard Weir\",\"doi\":\"10.1016/j.jneumeth.2024.110268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Delivering optogenetic genes to the peripheral sensory nervous system provides an efficient approach to study and treat neurological disorders and offers the potential to reintroduce sensory feedback to prostheses users and those who have incurred other neuropathies. Adeno-associated viral (AAV) vectors are a common method of gene delivery due to efficiency of gene transfer and minimal toxicity. AAVs are capable of being designed to target specific tissues, with transduction efficacy determined through the combination of serotype and genetic promoter selection, as well as location of vector administration. The dorsal root ganglia (DRGs) are collections of cell bodies of sensory neurons which project from the periphery to the central nervous system (CNS). The anatomical make-up of DRGs make them an ideal injection location to target the somatosensory neurons in the peripheral nervous system (PNS).</p></div><div><h3>Comparison to existing methods</h3><p>Previous studies have detailed methods of direct DRG injection in rats and dorsal horn injection in mice, however, due to the size and anatomical differences between rats and strains of mice, there is only one other published method for AAV injection into murine DRGs for transduction of peripheral sensory neurons using a different methodology.</p></div><div><h3>New Method/Results</h3><p>Here, we detail the necessary materials and methods required to inject AAVs into the L3 and L4 DRGs of mice, as well as how to harvest the sciatic nerve and L3/L4 DRGs for analysis. This methodology results in optogenetic expression in both the L3/L4 DRGs and sciatic nerve and can be adapted to inject any DRG.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"411 \",\"pages\":\"Article 110268\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002139\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024002139","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:向外周感觉神经系统传递光遗传基因为研究和治疗神经系统疾病提供了一种有效的方法,并为假肢使用者和其他神经病患者重新获得感觉反馈提供了可能性。腺相关病毒(AAV)载体是一种常见的基因递送方法,因为其基因转移效率高、毒性小。AAV 可针对特定组织进行设计,通过血清型和基因启动子的选择以及载体的给药位置来确定转导效果。背根神经节(DRGs)是感觉神经元细胞体的集合,从外周投射到中枢神经系统(CNS)。背根神经节的解剖结构使其成为针对周围神经系统(PNS)中躯体感觉神经元的理想注射位置:以前的研究详细介绍了大鼠 DRG 直接注射和小鼠背角注射的方法,但是,由于大鼠和小鼠品系在体型和解剖学上的差异,目前仅有一种已发表的方法可将 AAV 注射到小鼠 DRG 中,使用不同的方法转导外周感觉神经元:在此,我们详细介绍了将 AAV 注入小鼠 L3 和 L4 DRG 所需的材料和方法,以及如何收获坐骨神经和 L3/L4 DRG 进行分析。这种方法可在 L3/L4 DRG 和坐骨神经中实现光遗传表达,也可用于注射任何 DRG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct dorsal root ganglia (DRG) injection in mice for analysis of adeno-associated viral (AAV) gene transfer to peripheral somatosensory neurons

Background

Delivering optogenetic genes to the peripheral sensory nervous system provides an efficient approach to study and treat neurological disorders and offers the potential to reintroduce sensory feedback to prostheses users and those who have incurred other neuropathies. Adeno-associated viral (AAV) vectors are a common method of gene delivery due to efficiency of gene transfer and minimal toxicity. AAVs are capable of being designed to target specific tissues, with transduction efficacy determined through the combination of serotype and genetic promoter selection, as well as location of vector administration. The dorsal root ganglia (DRGs) are collections of cell bodies of sensory neurons which project from the periphery to the central nervous system (CNS). The anatomical make-up of DRGs make them an ideal injection location to target the somatosensory neurons in the peripheral nervous system (PNS).

Comparison to existing methods

Previous studies have detailed methods of direct DRG injection in rats and dorsal horn injection in mice, however, due to the size and anatomical differences between rats and strains of mice, there is only one other published method for AAV injection into murine DRGs for transduction of peripheral sensory neurons using a different methodology.

New Method/Results

Here, we detail the necessary materials and methods required to inject AAVs into the L3 and L4 DRGs of mice, as well as how to harvest the sciatic nerve and L3/L4 DRGs for analysis. This methodology results in optogenetic expression in both the L3/L4 DRGs and sciatic nerve and can be adapted to inject any DRG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信