{"title":"新的分散线性化四则运算","authors":"Valentino Smaldore , Corrado Zanella , Ferdinando Zullo","doi":"10.1016/j.laa.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mn>1</mn><mo><</mo><mi>t</mi><mo><</mo><mi>n</mi></math></span> be integers, where <em>t</em> is a divisor of <em>n</em>. An <span><math><mi>R-</mi><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></math></span>-partially scattered polynomial is a <em>q</em>-polynomial <em>f</em> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> that satisfies the condition that for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> such that <span><math><mi>x</mi><mo>/</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></msub></math></span>, if <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>/</mo><mi>y</mi></math></span>, then <span><math><mi>x</mi><mo>/</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>; <em>f</em> is called scattered if this implication holds for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. Two polynomials in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> are said to be equivalent if their graphs are in the same orbit under the action of the group <span><math><mrow><mi>Γ</mi><mi>L</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. For <span><math><mi>n</mi><mo>></mo><mn>8</mn></math></span> only three families of scattered polynomials in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> are known: (<em>i</em>) monomials of pseudoregulus type, <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span> binomials of Lunardon-Polverino type, and <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> a family of quadrinomials defined in <span><span>[1]</span></span>, <span><span>[10]</span></span> and extended in <span><span>[8]</span></span>, <span><span>[13]</span></span>. In this paper we prove that the polynomial <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>m</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi></mrow></msup></mrow></msub><mo>=</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>+</mo><mi>m</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi></mrow></msup></mrow></msup><mo>−</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span>, <em>q</em> odd, <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> is <span><math><mi>R-</mi><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></math></span>-partially scattered for every value of <span><math><mi>m</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> and <em>J</em> coprime with 2<em>t</em>. Moreover, for every <span><math><mi>t</mi><mo>></mo><mn>4</mn></math></span> and <span><math><mi>q</mi><mo>></mo><mn>5</mn></math></span> there exist values of <em>m</em> for which <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span> is scattered and new with respect to the polynomials mentioned in (<em>i</em>), <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> above. The related linear sets are of <span><math><mrow><mi>Γ</mi><mi>L</mi></mrow></math></span>-class at least two.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 143-160"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003331/pdfft?md5=0868d48ffbb0ce34705f89a2a1932662&pid=1-s2.0-S0024379524003331-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New scattered linearized quadrinomials\",\"authors\":\"Valentino Smaldore , Corrado Zanella , Ferdinando Zullo\",\"doi\":\"10.1016/j.laa.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mn>1</mn><mo><</mo><mi>t</mi><mo><</mo><mi>n</mi></math></span> be integers, where <em>t</em> is a divisor of <em>n</em>. An <span><math><mi>R-</mi><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></math></span>-partially scattered polynomial is a <em>q</em>-polynomial <em>f</em> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> that satisfies the condition that for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> such that <span><math><mi>x</mi><mo>/</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></msub></math></span>, if <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>/</mo><mi>y</mi></math></span>, then <span><math><mi>x</mi><mo>/</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>; <em>f</em> is called scattered if this implication holds for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. Two polynomials in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> are said to be equivalent if their graphs are in the same orbit under the action of the group <span><math><mrow><mi>Γ</mi><mi>L</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. For <span><math><mi>n</mi><mo>></mo><mn>8</mn></math></span> only three families of scattered polynomials in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> are known: (<em>i</em>) monomials of pseudoregulus type, <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span> binomials of Lunardon-Polverino type, and <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> a family of quadrinomials defined in <span><span>[1]</span></span>, <span><span>[10]</span></span> and extended in <span><span>[8]</span></span>, <span><span>[13]</span></span>. In this paper we prove that the polynomial <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>m</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi></mrow></msup></mrow></msub><mo>=</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>+</mo><mi>m</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi></mrow></msup></mrow></msup><mo>−</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span>, <em>q</em> odd, <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> is <span><math><mi>R-</mi><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></math></span>-partially scattered for every value of <span><math><mi>m</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> and <em>J</em> coprime with 2<em>t</em>. Moreover, for every <span><math><mi>t</mi><mo>></mo><mn>4</mn></math></span> and <span><math><mi>q</mi><mo>></mo><mn>5</mn></math></span> there exist values of <em>m</em> for which <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span> is scattered and new with respect to the polynomials mentioned in (<em>i</em>), <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> above. The related linear sets are of <span><math><mrow><mi>Γ</mi><mi>L</mi></mrow></math></span>-class at least two.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"702 \",\"pages\":\"Pages 143-160\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003331/pdfft?md5=0868d48ffbb0ce34705f89a2a1932662&pid=1-s2.0-S0024379524003331-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003331\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003331","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let be integers, where t is a divisor of n. An -partially scattered polynomial is a q-polynomial f in that satisfies the condition that for all such that , if , then ; f is called scattered if this implication holds for all . Two polynomials in are said to be equivalent if their graphs are in the same orbit under the action of the group . For only three families of scattered polynomials in are known: (i) monomials of pseudoregulus type, binomials of Lunardon-Polverino type, and a family of quadrinomials defined in [1], [10] and extended in [8], [13]. In this paper we prove that the polynomial , q odd, is -partially scattered for every value of and J coprime with 2t. Moreover, for every and there exist values of m for which is scattered and new with respect to the polynomials mentioned in (i), and above. The related linear sets are of -class at least two.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.