新的分散线性化四则运算

IF 1 3区 数学 Q1 MATHEMATICS
Valentino Smaldore , Corrado Zanella , Ferdinando Zullo
{"title":"新的分散线性化四则运算","authors":"Valentino Smaldore ,&nbsp;Corrado Zanella ,&nbsp;Ferdinando Zullo","doi":"10.1016/j.laa.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mn>1</mn><mo>&lt;</mo><mi>t</mi><mo>&lt;</mo><mi>n</mi></math></span> be integers, where <em>t</em> is a divisor of <em>n</em>. An <span><math><mi>R-</mi><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></math></span>-partially scattered polynomial is a <em>q</em>-polynomial <em>f</em> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> that satisfies the condition that for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> such that <span><math><mi>x</mi><mo>/</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></msub></math></span>, if <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>/</mo><mi>y</mi></math></span>, then <span><math><mi>x</mi><mo>/</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>; <em>f</em> is called scattered if this implication holds for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. Two polynomials in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> are said to be equivalent if their graphs are in the same orbit under the action of the group <span><math><mrow><mi>Γ</mi><mi>L</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. For <span><math><mi>n</mi><mo>&gt;</mo><mn>8</mn></math></span> only three families of scattered polynomials in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> are known: (<em>i</em>) monomials of pseudoregulus type, <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span> binomials of Lunardon-Polverino type, and <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> a family of quadrinomials defined in <span><span>[1]</span></span>, <span><span>[10]</span></span> and extended in <span><span>[8]</span></span>, <span><span>[13]</span></span>. In this paper we prove that the polynomial <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>m</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi></mrow></msup></mrow></msub><mo>=</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>+</mo><mi>m</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi></mrow></msup></mrow></msup><mo>−</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span>, <em>q</em> odd, <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> is <span><math><mi>R-</mi><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></math></span>-partially scattered for every value of <span><math><mi>m</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> and <em>J</em> coprime with 2<em>t</em>. Moreover, for every <span><math><mi>t</mi><mo>&gt;</mo><mn>4</mn></math></span> and <span><math><mi>q</mi><mo>&gt;</mo><mn>5</mn></math></span> there exist values of <em>m</em> for which <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span> is scattered and new with respect to the polynomials mentioned in (<em>i</em>), <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> above. The related linear sets are of <span><math><mrow><mi>Γ</mi><mi>L</mi></mrow></math></span>-class at least two.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 143-160"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003331/pdfft?md5=0868d48ffbb0ce34705f89a2a1932662&pid=1-s2.0-S0024379524003331-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New scattered linearized quadrinomials\",\"authors\":\"Valentino Smaldore ,&nbsp;Corrado Zanella ,&nbsp;Ferdinando Zullo\",\"doi\":\"10.1016/j.laa.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mn>1</mn><mo>&lt;</mo><mi>t</mi><mo>&lt;</mo><mi>n</mi></math></span> be integers, where <em>t</em> is a divisor of <em>n</em>. An <span><math><mi>R-</mi><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></math></span>-partially scattered polynomial is a <em>q</em>-polynomial <em>f</em> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> that satisfies the condition that for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> such that <span><math><mi>x</mi><mo>/</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></msub></math></span>, if <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>/</mo><mi>y</mi></math></span>, then <span><math><mi>x</mi><mo>/</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>; <em>f</em> is called scattered if this implication holds for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. Two polynomials in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> are said to be equivalent if their graphs are in the same orbit under the action of the group <span><math><mrow><mi>Γ</mi><mi>L</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. For <span><math><mi>n</mi><mo>&gt;</mo><mn>8</mn></math></span> only three families of scattered polynomials in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> are known: (<em>i</em>) monomials of pseudoregulus type, <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span> binomials of Lunardon-Polverino type, and <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> a family of quadrinomials defined in <span><span>[1]</span></span>, <span><span>[10]</span></span> and extended in <span><span>[8]</span></span>, <span><span>[13]</span></span>. In this paper we prove that the polynomial <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>m</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi></mrow></msup></mrow></msub><mo>=</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>+</mo><mi>m</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi></mrow></msup></mrow></msup><mo>−</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span>, <em>q</em> odd, <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> is <span><math><mi>R-</mi><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></math></span>-partially scattered for every value of <span><math><mi>m</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> and <em>J</em> coprime with 2<em>t</em>. Moreover, for every <span><math><mi>t</mi><mo>&gt;</mo><mn>4</mn></math></span> and <span><math><mi>q</mi><mo>&gt;</mo><mn>5</mn></math></span> there exist values of <em>m</em> for which <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span> is scattered and new with respect to the polynomials mentioned in (<em>i</em>), <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> above. The related linear sets are of <span><math><mrow><mi>Γ</mi><mi>L</mi></mrow></math></span>-class at least two.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"702 \",\"pages\":\"Pages 143-160\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003331/pdfft?md5=0868d48ffbb0ce34705f89a2a1932662&pid=1-s2.0-S0024379524003331-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003331\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003331","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 1<t<n 为整数,其中 t 是 n 的除数。一个 R-qt 部分分散多项式是 Fqn[X] 中的一个 q 多项式 f,它满足以下条件:对于所有 x,y∈Fqn⁎,使得 x/y∈Fqt,如果 f(x)/x=f(y)/y,那么 x/y∈Fq;如果这个蕴涵对于所有 x,y∈Fqn⁎都成立,那么 f 称为分散多项式。如果在群ΓL(2,qn)的作用下,Fqn[X] 中的两个多项式的图在同一轨道上,则称这两个多项式等价。对于 n>8,已知 Fqn[X] 中只有三个分散多项式族:(i) pseudoregulus 型单项式,(ii) Lunardon-Polverino 型二项式,以及 (iii) 在 [1], [10] 中定义并在 [8], [13] 中扩展的四次多项式族。在本文中,我们证明多项式 φm,qJ=XqJ(t-1)+XqJ(2t-1)+m(XqJ-XqJ(t+1))∈Fq2t[X], q 奇,t≥3 对于 m∈Fqt⁎ 和 J 与 2t 共素数的每一个值都是 R-qt 部分分散的。此外,对于每一个 t>4 和 q>5,都存在这样的 m 值,即φm,q 对于上述 (i)、(ii) 和 (iii) 中提到的多项式是分散的和新的。相关的线性集合至少有两个 ΓL 类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New scattered linearized quadrinomials

Let 1<t<n be integers, where t is a divisor of n. An R-qt-partially scattered polynomial is a q-polynomial f in Fqn[X] that satisfies the condition that for all x,yFqn such that x/yFqt, if f(x)/x=f(y)/y, then x/yFq; f is called scattered if this implication holds for all x,yFqn. Two polynomials in Fqn[X] are said to be equivalent if their graphs are in the same orbit under the action of the group ΓL(2,qn). For n>8 only three families of scattered polynomials in Fqn[X] are known: (i) monomials of pseudoregulus type, (ii) binomials of Lunardon-Polverino type, and (iii) a family of quadrinomials defined in [1], [10] and extended in [8], [13]. In this paper we prove that the polynomial φm,qJ=XqJ(t1)+XqJ(2t1)+m(XqJXqJ(t+1))Fq2t[X], q odd, t3 is R-qt-partially scattered for every value of mFqt and J coprime with 2t. Moreover, for every t>4 and q>5 there exist values of m for which φm,q is scattered and new with respect to the polynomials mentioned in (i), (ii) and (iii) above. The related linear sets are of ΓL-class at least two.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信