机器学习方法捕捉细胞衰老异质性的前景。

IF 17 Q1 CELL BIOLOGY
Imanol Duran, Cleo L. Bishop, Jesús Gil, Ryan Wallis
{"title":"机器学习方法捕捉细胞衰老异质性的前景。","authors":"Imanol Duran, Cleo L. Bishop, Jesús Gil, Ryan Wallis","doi":"10.1038/s43587-024-00703-2","DOIUrl":null,"url":null,"abstract":"The identification of senescent cells is a long-standing unresolved challenge, owing to their intrinsic heterogeneity and the lack of universal markers. In this Comment, we discuss the recent advent of machine-learning-based approaches to identifying senescent cells by using unbiased, multiparameter morphological assessments, and how these tools can assist future senescence research.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"4 9","pages":"1167-1170"},"PeriodicalIF":17.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The promise of machine learning approaches to capture cellular senescence heterogeneity\",\"authors\":\"Imanol Duran, Cleo L. Bishop, Jesús Gil, Ryan Wallis\",\"doi\":\"10.1038/s43587-024-00703-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of senescent cells is a long-standing unresolved challenge, owing to their intrinsic heterogeneity and the lack of universal markers. In this Comment, we discuss the recent advent of machine-learning-based approaches to identifying senescent cells by using unbiased, multiparameter morphological assessments, and how these tools can assist future senescence research.\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\"4 9\",\"pages\":\"1167-1170\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43587-024-00703-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00703-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于衰老细胞固有的异质性和缺乏通用标记,识别衰老细胞是一项长期悬而未决的挑战。在这篇评论中,我们将讨论最近出现的基于机器学习的方法,通过使用无偏见的多参数形态学评估来识别衰老细胞,以及这些工具如何帮助未来的衰老研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The promise of machine learning approaches to capture cellular senescence heterogeneity

The promise of machine learning approaches to capture cellular senescence heterogeneity

The promise of machine learning approaches to capture cellular senescence heterogeneity
The identification of senescent cells is a long-standing unresolved challenge, owing to their intrinsic heterogeneity and the lack of universal markers. In this Comment, we discuss the recent advent of machine-learning-based approaches to identifying senescent cells by using unbiased, multiparameter morphological assessments, and how these tools can assist future senescence research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信