Beatriz Llavata, Ronaldo E. Mello, Amparo Quiles, Jefferson L. G. Correa, Juan A. Cárcel
{"title":"冻融和 PEF 预处理对橘皮对流干燥和超声波辅助干燥的动力学和微观结构的影响。","authors":"Beatriz Llavata, Ronaldo E. Mello, Amparo Quiles, Jefferson L. G. Correa, Juan A. Cárcel","doi":"10.1038/s41538-024-00301-x","DOIUrl":null,"url":null,"abstract":"The main waste generated by juice industry comprises orange peels, which have a great upcycling potential once stabilized. Drying is the most used method for this purpose, but the high energy consumption prompts interest in its intensification. This study assessed the influence of freeze-thaw and pulsed electric field (PEF) pretreatments in conventional and airborne ultrasound-assisted drying (50 °C) of orange peels. None of these pretreatments alone got to reduce processing times significantly, but combined with ultrasound-assisted drying produced a significant shortening of the process. This was particularly important in the lower intensity PEF pretreatment tested (0.33 kJ/kg), indicating the existence of optimum conditions to carry out the pretreatments. Microstructure analysis revealed that the application of ultrasound during drying led to better preservation of the sample structure. Thus, the integration of pretreatment techniques to ultrasound-assisted drying may not only shorten the process but also help to preserve the original structure.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-9"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of freeze-thaw and PEF pretreatments on the kinetics and microstructure of convective and ultrasound-assisted drying of orange peel\",\"authors\":\"Beatriz Llavata, Ronaldo E. Mello, Amparo Quiles, Jefferson L. G. Correa, Juan A. Cárcel\",\"doi\":\"10.1038/s41538-024-00301-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main waste generated by juice industry comprises orange peels, which have a great upcycling potential once stabilized. Drying is the most used method for this purpose, but the high energy consumption prompts interest in its intensification. This study assessed the influence of freeze-thaw and pulsed electric field (PEF) pretreatments in conventional and airborne ultrasound-assisted drying (50 °C) of orange peels. None of these pretreatments alone got to reduce processing times significantly, but combined with ultrasound-assisted drying produced a significant shortening of the process. This was particularly important in the lower intensity PEF pretreatment tested (0.33 kJ/kg), indicating the existence of optimum conditions to carry out the pretreatments. Microstructure analysis revealed that the application of ultrasound during drying led to better preservation of the sample structure. Thus, the integration of pretreatment techniques to ultrasound-assisted drying may not only shorten the process but also help to preserve the original structure.\",\"PeriodicalId\":19367,\"journal\":{\"name\":\"NPJ Science of Food\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Science of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.nature.com/articles/s41538-024-00301-x\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41538-024-00301-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effect of freeze-thaw and PEF pretreatments on the kinetics and microstructure of convective and ultrasound-assisted drying of orange peel
The main waste generated by juice industry comprises orange peels, which have a great upcycling potential once stabilized. Drying is the most used method for this purpose, but the high energy consumption prompts interest in its intensification. This study assessed the influence of freeze-thaw and pulsed electric field (PEF) pretreatments in conventional and airborne ultrasound-assisted drying (50 °C) of orange peels. None of these pretreatments alone got to reduce processing times significantly, but combined with ultrasound-assisted drying produced a significant shortening of the process. This was particularly important in the lower intensity PEF pretreatment tested (0.33 kJ/kg), indicating the existence of optimum conditions to carry out the pretreatments. Microstructure analysis revealed that the application of ultrasound during drying led to better preservation of the sample structure. Thus, the integration of pretreatment techniques to ultrasound-assisted drying may not only shorten the process but also help to preserve the original structure.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.