精神病遗传高风险与临床高风险的独特功能神经影像特征。

IF 9.6 1区 医学 Q1 NEUROSCIENCES
Biological Psychiatry Pub Date : 2025-01-15 Epub Date: 2024-08-23 DOI:10.1016/j.biopsych.2024.08.010
Charles H Schleifer, Sarah E Chang, Carolyn M Amir, Kathleen P O'Hora, Hoki Fung, Jee Won D Kang, Leila Kushan-Wells, Eileen Daly, Fabio Di Fabio, Marianna Frascarelli, Maria Gudbrandsen, Wendy R Kates, Declan Murphy, Jean Addington, Alan Anticevic, Kristin S Cadenhead, Tyrone D Cannon, Barbara A Cornblatt, Matcheri Keshavan, Daniel H Mathalon, Diana O Perkins, William S Stone, Elaine Walker, Scott W Woods, Lucina Q Uddin, Kuldeep Kumar, Gil D Hoftman, Carrie E Bearden
{"title":"精神病遗传高风险与临床高风险的独特功能神经影像特征。","authors":"Charles H Schleifer, Sarah E Chang, Carolyn M Amir, Kathleen P O'Hora, Hoki Fung, Jee Won D Kang, Leila Kushan-Wells, Eileen Daly, Fabio Di Fabio, Marianna Frascarelli, Maria Gudbrandsen, Wendy R Kates, Declan Murphy, Jean Addington, Alan Anticevic, Kristin S Cadenhead, Tyrone D Cannon, Barbara A Cornblatt, Matcheri Keshavan, Daniel H Mathalon, Diana O Perkins, William S Stone, Elaine Walker, Scott W Woods, Lucina Q Uddin, Kuldeep Kumar, Gil D Hoftman, Carrie E Bearden","doi":"10.1016/j.biopsych.2024.08.010","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>22q11.2 deletion syndrome (22qDel) is a copy number variant that is associated with psychosis and other neurodevelopmental disorders. Adolescents who are at clinical high risk for psychosis (CHR) are identified based on the presence of subthreshold psychosis symptoms. Whether common neural substrates underlie these distinct high-risk populations is unknown. We compared functional brain measures in 22qDel and CHR cohorts and mapped the results to biological pathways.</p><p><strong>Methods: </strong>We analyzed 2 large multisite cohorts with resting-state functional magnetic resonance imaging data: 1) a 22qDel cohort (n = 164, 47% female) and typically developing (TD) control participants (n = 134, 56% female); and 2) a cohort of CHR individuals (n = 240, 41% female) and TD control participants (n = 149, 46% female) from the NAPLS-2 (North American Prodrome Longitudinal Study-2). We computed global brain connectivity (GBC), local connectivity (LC), and brain signal variability (BSV) across cortical regions and tested case-control differences for 22qDel and CHR separately. Group difference maps were related to published brain maps using autocorrelation-preserving permutation.</p><p><strong>Results: </strong>BSV, LC, and GBC were significantly disrupted in individuals with 22qDel compared with TD control participants (false discovery rate-corrected q < .05). Spatial maps of BSV and LC differences were highly correlated with each other, unlike GBC. In the CHR group, only LC was significantly altered versus the control group, with a different spatial pattern than the 22qDel group. Group differences mapped onto biological gradients, with 22qDel effects being strongest in regions with high predicted blood flow and metabolism.</p><p><strong>Conclusions: </strong>22qDel carriers and CHR individuals exhibited different effects on functional magnetic resonance imaging temporal variability and multiscale functional connectivity. In 22qDel carriers, strong and convergent disruptions in BSV and LC that were not seen in CHR individuals suggest distinct functional brain alterations.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":"178-187"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique Functional Neuroimaging Signatures of Genetic Versus Clinical High Risk for Psychosis.\",\"authors\":\"Charles H Schleifer, Sarah E Chang, Carolyn M Amir, Kathleen P O'Hora, Hoki Fung, Jee Won D Kang, Leila Kushan-Wells, Eileen Daly, Fabio Di Fabio, Marianna Frascarelli, Maria Gudbrandsen, Wendy R Kates, Declan Murphy, Jean Addington, Alan Anticevic, Kristin S Cadenhead, Tyrone D Cannon, Barbara A Cornblatt, Matcheri Keshavan, Daniel H Mathalon, Diana O Perkins, William S Stone, Elaine Walker, Scott W Woods, Lucina Q Uddin, Kuldeep Kumar, Gil D Hoftman, Carrie E Bearden\",\"doi\":\"10.1016/j.biopsych.2024.08.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>22q11.2 deletion syndrome (22qDel) is a copy number variant that is associated with psychosis and other neurodevelopmental disorders. Adolescents who are at clinical high risk for psychosis (CHR) are identified based on the presence of subthreshold psychosis symptoms. Whether common neural substrates underlie these distinct high-risk populations is unknown. We compared functional brain measures in 22qDel and CHR cohorts and mapped the results to biological pathways.</p><p><strong>Methods: </strong>We analyzed 2 large multisite cohorts with resting-state functional magnetic resonance imaging data: 1) a 22qDel cohort (n = 164, 47% female) and typically developing (TD) control participants (n = 134, 56% female); and 2) a cohort of CHR individuals (n = 240, 41% female) and TD control participants (n = 149, 46% female) from the NAPLS-2 (North American Prodrome Longitudinal Study-2). We computed global brain connectivity (GBC), local connectivity (LC), and brain signal variability (BSV) across cortical regions and tested case-control differences for 22qDel and CHR separately. Group difference maps were related to published brain maps using autocorrelation-preserving permutation.</p><p><strong>Results: </strong>BSV, LC, and GBC were significantly disrupted in individuals with 22qDel compared with TD control participants (false discovery rate-corrected q < .05). Spatial maps of BSV and LC differences were highly correlated with each other, unlike GBC. In the CHR group, only LC was significantly altered versus the control group, with a different spatial pattern than the 22qDel group. Group differences mapped onto biological gradients, with 22qDel effects being strongest in regions with high predicted blood flow and metabolism.</p><p><strong>Conclusions: </strong>22qDel carriers and CHR individuals exhibited different effects on functional magnetic resonance imaging temporal variability and multiscale functional connectivity. In 22qDel carriers, strong and convergent disruptions in BSV and LC that were not seen in CHR individuals suggest distinct functional brain alterations.</p>\",\"PeriodicalId\":8918,\"journal\":{\"name\":\"Biological Psychiatry\",\"volume\":\" \",\"pages\":\"178-187\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopsych.2024.08.010\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.08.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:22q11.2缺失综合征(22qDel)是一种与精神病和其他神经发育障碍相关的拷贝数变异(CNV)。根据阈值以下精神病症状的存在,可确定青少年为精神病临床高危人群(CHR)。这些不同的高危人群是否具有共同的神经基质尚不清楚。我们比较了 22qDel 和 CHR 队列的大脑功能测量结果,并将结果映射到生物通路:我们用静息状态功能磁共振成像(rs-fMRI)分析了两个大型多站点队列:1)22qDel(n=164,47% 女性)和典型发育(TD)对照组(n=134,56% 女性);2)北美前驱症纵向研究-2 的 CHR 个体(n=244,41% 女性)和 TD 对照组(n=151,46% 女性)。我们计算了大脑皮层各区域的全局连通性(GBC)、局部连通性(LC)和脑信号变异性(BSV),分别测试了22qDel和CHR的病例对照差异。使用自相关保留置换法将组间差异图与已发表的脑图相关联:结论:22qDel 和 CHR 对 fMRI 时间变异性和多尺度功能连接表现出不同的影响。在22qDel患者中,BSV和LC出现了CHR患者所没有的强烈且趋同的破坏,这表明大脑功能发生了不同的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unique Functional Neuroimaging Signatures of Genetic Versus Clinical High Risk for Psychosis.

Background: 22q11.2 deletion syndrome (22qDel) is a copy number variant that is associated with psychosis and other neurodevelopmental disorders. Adolescents who are at clinical high risk for psychosis (CHR) are identified based on the presence of subthreshold psychosis symptoms. Whether common neural substrates underlie these distinct high-risk populations is unknown. We compared functional brain measures in 22qDel and CHR cohorts and mapped the results to biological pathways.

Methods: We analyzed 2 large multisite cohorts with resting-state functional magnetic resonance imaging data: 1) a 22qDel cohort (n = 164, 47% female) and typically developing (TD) control participants (n = 134, 56% female); and 2) a cohort of CHR individuals (n = 240, 41% female) and TD control participants (n = 149, 46% female) from the NAPLS-2 (North American Prodrome Longitudinal Study-2). We computed global brain connectivity (GBC), local connectivity (LC), and brain signal variability (BSV) across cortical regions and tested case-control differences for 22qDel and CHR separately. Group difference maps were related to published brain maps using autocorrelation-preserving permutation.

Results: BSV, LC, and GBC were significantly disrupted in individuals with 22qDel compared with TD control participants (false discovery rate-corrected q < .05). Spatial maps of BSV and LC differences were highly correlated with each other, unlike GBC. In the CHR group, only LC was significantly altered versus the control group, with a different spatial pattern than the 22qDel group. Group differences mapped onto biological gradients, with 22qDel effects being strongest in regions with high predicted blood flow and metabolism.

Conclusions: 22qDel carriers and CHR individuals exhibited different effects on functional magnetic resonance imaging temporal variability and multiscale functional connectivity. In 22qDel carriers, strong and convergent disruptions in BSV and LC that were not seen in CHR individuals suggest distinct functional brain alterations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Psychiatry
Biological Psychiatry 医学-精神病学
CiteScore
18.80
自引率
2.80%
发文量
1398
审稿时长
33 days
期刊介绍: Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信