开发颅内动脉瘤机械特性分析装置:在聚合物模型动脉上进行校准

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
G. Plet , J. Raviol , H. Magoariec , C. Pailler-Mattei
{"title":"开发颅内动脉瘤机械特性分析装置:在聚合物模型动脉上进行校准","authors":"G. Plet ,&nbsp;J. Raviol ,&nbsp;H. Magoariec ,&nbsp;C. Pailler-Mattei","doi":"10.1016/j.medengphy.2024.104225","DOIUrl":null,"url":null,"abstract":"<div><p>Intracranial aneurysm is a major health issue related to biomechanical arterial wall degradation. Currently, no method allows predicting rupture risk based on <em>in vivo</em> quantitative mechanical data. This work is part of a large-scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool, based on the <em>in vivo</em> mechanical characterisation of the aneurysm wall. Thus, the primary objective of the project was to develop a deformation device prototype (DDP) of the artery wall and to calibrate it on polymeric phantom arteries. The deformations induced on the phantom arteries were quantified experimentally using a Digital Image Correlation (DIC) system. The results indicated that the DIC system was able to measure the small displacements generated by the DDP. We also observed that the flow mimicking the blood flow did not significantly disturb the measurements of the artery wall displacement caused by the DDP. Finally, a limit displacement value generated by the DDP was evaluated. This value corresponds to the lowest displacement value detectable by the clinical imaging system that will be tested on animals in the future (Spectral Photon Counting CT).</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"131 ","pages":"Article 104225"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a mechanical characterisation device for intracranial aneurysms: Calibration on polymeric phantom arteries\",\"authors\":\"G. Plet ,&nbsp;J. Raviol ,&nbsp;H. Magoariec ,&nbsp;C. Pailler-Mattei\",\"doi\":\"10.1016/j.medengphy.2024.104225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intracranial aneurysm is a major health issue related to biomechanical arterial wall degradation. Currently, no method allows predicting rupture risk based on <em>in vivo</em> quantitative mechanical data. This work is part of a large-scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool, based on the <em>in vivo</em> mechanical characterisation of the aneurysm wall. Thus, the primary objective of the project was to develop a deformation device prototype (DDP) of the artery wall and to calibrate it on polymeric phantom arteries. The deformations induced on the phantom arteries were quantified experimentally using a Digital Image Correlation (DIC) system. The results indicated that the DIC system was able to measure the small displacements generated by the DDP. We also observed that the flow mimicking the blood flow did not significantly disturb the measurements of the artery wall displacement caused by the DDP. Finally, a limit displacement value generated by the DDP was evaluated. This value corresponds to the lowest displacement value detectable by the clinical imaging system that will be tested on animals in the future (Spectral Photon Counting CT).</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"131 \",\"pages\":\"Article 104225\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324001267\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001267","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

颅内动脉瘤是一个与动脉壁生物力学退化有关的重大健康问题。目前,还没有一种方法可以根据体内定量机械数据预测破裂风险。这项工作是一个大型项目的一部分,该项目旨在根据动脉瘤壁的活体机械特征,为临床医生提供一种非侵入性、针对特定患者的决策支持工具。因此,该项目的主要目标是开发动脉壁变形装置原型(DDP),并在聚合物模型动脉上进行校准。使用数字图像关联(DIC)系统对模型动脉的变形进行了实验量化。结果表明,DIC 系统能够测量 DDP 产生的微小位移。我们还观察到,模拟血流的流动并没有明显干扰由 DDP 引起的动脉壁位移测量。最后,我们对 DDP 产生的极限位移值进行了评估。该值相当于未来将在动物身上测试的临床成像系统(光谱光子计数 CT)可检测到的最低位移值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a mechanical characterisation device for intracranial aneurysms: Calibration on polymeric phantom arteries

Intracranial aneurysm is a major health issue related to biomechanical arterial wall degradation. Currently, no method allows predicting rupture risk based on in vivo quantitative mechanical data. This work is part of a large-scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool, based on the in vivo mechanical characterisation of the aneurysm wall. Thus, the primary objective of the project was to develop a deformation device prototype (DDP) of the artery wall and to calibrate it on polymeric phantom arteries. The deformations induced on the phantom arteries were quantified experimentally using a Digital Image Correlation (DIC) system. The results indicated that the DIC system was able to measure the small displacements generated by the DDP. We also observed that the flow mimicking the blood flow did not significantly disturb the measurements of the artery wall displacement caused by the DDP. Finally, a limit displacement value generated by the DDP was evaluated. This value corresponds to the lowest displacement value detectable by the clinical imaging system that will be tested on animals in the future (Spectral Photon Counting CT).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信