数值研究纳米壳厚度对水介质中混合纳米结构光热响应的影响

IF 3.1 3区 物理与天体物理 Q2 Engineering
Optik Pub Date : 2024-08-23 DOI:10.1016/j.ijleo.2024.172007
Zahraa Laith Ibrahem Karwi , Ahmed Kadem Kodeary , Ferydon Babaei
{"title":"数值研究纳米壳厚度对水介质中混合纳米结构光热响应的影响","authors":"Zahraa Laith Ibrahem Karwi ,&nbsp;Ahmed Kadem Kodeary ,&nbsp;Ferydon Babaei","doi":"10.1016/j.ijleo.2024.172007","DOIUrl":null,"url":null,"abstract":"<div><p>The current study describes the effect of changing a shell thickness on photothermal response of a hybrid nanostructures, using theoretical investigation based on the Finite Element Method (FEM) of the COMSOL multi-physics program. The hybrid nanostructures are the Core/Shell nanoparticles (C/S NPs) and the Core/Multi-Shell nanoparticles (C/MS NPs), with fixed core diameter (30 nm) and variable shell thickness (10–20 nm) to create a new type of hybrid nanostructures usable in photonic and optoelectronic applications. For these hybrid nanostructures, gold (Au) and silver (Ag) as a partner of titanium dioxide (TiO<sub>2</sub>) were used in thermo-plasmonic part. Hybrid multi-shell nanostructures consist of silver-gold and gold-silver sandwich with titanium dioxide shell in between, all of which are dispersed in an aqueous medium (n = 1.33). The optical properties, the local field distribution, and local heating control of plasmonic nanostructures have been studied under the influence of illumination at plasmonic wavelengths (405, and 532 nm). The results revealed to a clear tunable and adjustable optical and thermo-plasmonic properties by controlling the structure of the core/shell NPs. This results can be enhanced by changing the shell thickness, shape, size, and the nanostructure. The temperature elevation of the core/shell NPs was about 1–5 °C under different wavelengths of laser irradiation. Based on those results, there is possibility of using the core/shell nanoparticles as an efficient heat source in many applications, such as in the sterilization and disinfection of medical equipments.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"313 ","pages":"Article 172007"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigated numerically nanoshell thickness on photothermal response of hybrid nanostructures in an aqueous medium\",\"authors\":\"Zahraa Laith Ibrahem Karwi ,&nbsp;Ahmed Kadem Kodeary ,&nbsp;Ferydon Babaei\",\"doi\":\"10.1016/j.ijleo.2024.172007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current study describes the effect of changing a shell thickness on photothermal response of a hybrid nanostructures, using theoretical investigation based on the Finite Element Method (FEM) of the COMSOL multi-physics program. The hybrid nanostructures are the Core/Shell nanoparticles (C/S NPs) and the Core/Multi-Shell nanoparticles (C/MS NPs), with fixed core diameter (30 nm) and variable shell thickness (10–20 nm) to create a new type of hybrid nanostructures usable in photonic and optoelectronic applications. For these hybrid nanostructures, gold (Au) and silver (Ag) as a partner of titanium dioxide (TiO<sub>2</sub>) were used in thermo-plasmonic part. Hybrid multi-shell nanostructures consist of silver-gold and gold-silver sandwich with titanium dioxide shell in between, all of which are dispersed in an aqueous medium (n = 1.33). The optical properties, the local field distribution, and local heating control of plasmonic nanostructures have been studied under the influence of illumination at plasmonic wavelengths (405, and 532 nm). The results revealed to a clear tunable and adjustable optical and thermo-plasmonic properties by controlling the structure of the core/shell NPs. This results can be enhanced by changing the shell thickness, shape, size, and the nanostructure. The temperature elevation of the core/shell NPs was about 1–5 °C under different wavelengths of laser irradiation. Based on those results, there is possibility of using the core/shell nanoparticles as an efficient heat source in many applications, such as in the sterilization and disinfection of medical equipments.</p></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"313 \",\"pages\":\"Article 172007\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402624004066\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004066","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究基于 COMSOL 多物理场程序的有限元法 (FEM) 进行理论研究,阐述了改变外壳厚度对混合纳米结构光热响应的影响。混合纳米结构包括核/壳纳米粒子(C/S NPs)和核/多壳纳米粒子(C/MS NPs),核直径固定(30 nm),壳厚度可变(10-20 nm),从而创造出一种可用于光子和光电应用的新型混合纳米结构。在这些混合纳米结构中,金(Au)和银(Ag)作为二氧化钛(TiO2)的搭档被用于热等离子体部分。混合多壳纳米结构由银-金和金-银夹层组成,中间有二氧化钛壳,所有这些都分散在水介质中(n = 1.33)。在等离子波长(405 纳米和 532 纳米)照明的影响下,对等离子纳米结构的光学特性、局部电场分布和局部加热控制进行了研究。研究结果表明,通过控制核/壳 NPs 的结构,其光学和热等离子特性具有明显的可调节性。通过改变壳的厚度、形状、大小和纳米结构,可以增强这种结果。在不同波长的激光照射下,核/壳 NPs 的温度升高了约 1-5 ℃。基于这些结果,核/壳纳米粒子有可能作为一种高效热源应用于许多领域,如医疗设备的消毒和灭菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigated numerically nanoshell thickness on photothermal response of hybrid nanostructures in an aqueous medium

The current study describes the effect of changing a shell thickness on photothermal response of a hybrid nanostructures, using theoretical investigation based on the Finite Element Method (FEM) of the COMSOL multi-physics program. The hybrid nanostructures are the Core/Shell nanoparticles (C/S NPs) and the Core/Multi-Shell nanoparticles (C/MS NPs), with fixed core diameter (30 nm) and variable shell thickness (10–20 nm) to create a new type of hybrid nanostructures usable in photonic and optoelectronic applications. For these hybrid nanostructures, gold (Au) and silver (Ag) as a partner of titanium dioxide (TiO2) were used in thermo-plasmonic part. Hybrid multi-shell nanostructures consist of silver-gold and gold-silver sandwich with titanium dioxide shell in between, all of which are dispersed in an aqueous medium (n = 1.33). The optical properties, the local field distribution, and local heating control of plasmonic nanostructures have been studied under the influence of illumination at plasmonic wavelengths (405, and 532 nm). The results revealed to a clear tunable and adjustable optical and thermo-plasmonic properties by controlling the structure of the core/shell NPs. This results can be enhanced by changing the shell thickness, shape, size, and the nanostructure. The temperature elevation of the core/shell NPs was about 1–5 °C under different wavelengths of laser irradiation. Based on those results, there is possibility of using the core/shell nanoparticles as an efficient heat source in many applications, such as in the sterilization and disinfection of medical equipments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信