{"title":"图的能量和矩阵扩散的新类型界限","authors":"Mohammad Reza Oboudi","doi":"10.1016/j.laa.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>The energy of a simple graph <em>G</em> is defined as the sum of the absolute values of eigenvalues of the adjacency matrix of <em>G</em>. For a complex matrix <em>M</em> the spread of <em>M</em> is the maximum absolute value of the differences between any two eigenvalues of <em>M</em>. Thus if <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are the eigenvalues of <em>M</em>, then the spread of <em>M</em> is <span><math><msub><mrow><mi>max</mi></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mo></mo><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></math></span>. The spread of a graph <em>G</em> is defined as the spread of its adjacency matrix and is denoted by <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The inertia of <em>G</em> is an integer triple <span><math><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></math></span> specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix of <em>G</em>. In this paper we find some bounds for energy of graphs in terms of some parameters of graphs such as rank, inertia and spread of graphs. We find some bounds for spread of graphs and matrices that improve the previous bounds. In particular, we show that if <em>G</em> is a graph with <em>m</em> edges and inertia <span><math><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></math></span>, then <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msqrt><mrow><mfrac><mrow><mn>2</mn><mi>m</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></mfrac></mrow></msqrt></math></span> and the equality holds if and only if <span><math><mi>G</mi><mo>=</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><mi>G</mi><mo>=</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><munder><munder><mrow><mi>p</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>p</mi></mrow><mo>︸</mo></munder><mrow><mi>q</mi></mrow></munder></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msub><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></mrow></msub></math></span>, for some non-negative integers <span><math><mi>r</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></math></span> and <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 112-121"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New type bounds for energy of graphs and spread of matrices\",\"authors\":\"Mohammad Reza Oboudi\",\"doi\":\"10.1016/j.laa.2024.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The energy of a simple graph <em>G</em> is defined as the sum of the absolute values of eigenvalues of the adjacency matrix of <em>G</em>. For a complex matrix <em>M</em> the spread of <em>M</em> is the maximum absolute value of the differences between any two eigenvalues of <em>M</em>. Thus if <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are the eigenvalues of <em>M</em>, then the spread of <em>M</em> is <span><math><msub><mrow><mi>max</mi></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mo></mo><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></math></span>. The spread of a graph <em>G</em> is defined as the spread of its adjacency matrix and is denoted by <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The inertia of <em>G</em> is an integer triple <span><math><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></math></span> specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix of <em>G</em>. In this paper we find some bounds for energy of graphs in terms of some parameters of graphs such as rank, inertia and spread of graphs. We find some bounds for spread of graphs and matrices that improve the previous bounds. In particular, we show that if <em>G</em> is a graph with <em>m</em> edges and inertia <span><math><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></math></span>, then <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msqrt><mrow><mfrac><mrow><mn>2</mn><mi>m</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></mfrac></mrow></msqrt></math></span> and the equality holds if and only if <span><math><mi>G</mi><mo>=</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><mi>G</mi><mo>=</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><munder><munder><mrow><mi>p</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>p</mi></mrow><mo>︸</mo></munder><mrow><mi>q</mi></mrow></munder></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msub><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></mrow></msub></math></span>, for some non-negative integers <span><math><mi>r</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></math></span> and <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"702 \",\"pages\":\"Pages 112-121\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003306\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003306","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
简单图 G 的能量定义为 G 的邻接矩阵特征值的绝对值之和。对于复杂矩阵 M,M 的扩散是 M 的任意两个特征值之差的最大绝对值。图 G 的扩散定义为其邻接矩阵的扩散,用 s(G) 表示。G 的惯性是一个整数三元组 (n+,n-,n0),指定了 G 的邻接矩阵的正、负和零特征值的数目。在本文中,我们根据图的一些参数(如图的秩、惯性和展布)找到了图的能量的一些界限。我们发现了一些关于图和矩阵扩散的边界,这些边界改进了之前的边界。特别是,我们证明了如果 G 是一个有 m 条边且惯性为 (n+,n-,n0) 的图,那么 s(G)≥2m(n++n-)n+n- 且当且仅当 G=rKs∪tK1 或 G=rKp,...,p︸q∪tK1或 G=r1Ka1,b1∪⋯∪rhKah,bh,对于一些非负整数r,s,t,p,q和r1,a1,b1,...,rh,ah,bh,使得a1b1=⋯=ahbh,p≥2和q≥3。
New type bounds for energy of graphs and spread of matrices
The energy of a simple graph G is defined as the sum of the absolute values of eigenvalues of the adjacency matrix of G. For a complex matrix M the spread of M is the maximum absolute value of the differences between any two eigenvalues of M. Thus if are the eigenvalues of M, then the spread of M is . The spread of a graph G is defined as the spread of its adjacency matrix and is denoted by . The inertia of G is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix of G. In this paper we find some bounds for energy of graphs in terms of some parameters of graphs such as rank, inertia and spread of graphs. We find some bounds for spread of graphs and matrices that improve the previous bounds. In particular, we show that if G is a graph with m edges and inertia , then and the equality holds if and only if or or , for some non-negative integers and such that , and .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.