图的能量和矩阵扩散的新类型界限

IF 1 3区 数学 Q1 MATHEMATICS
Mohammad Reza Oboudi
{"title":"图的能量和矩阵扩散的新类型界限","authors":"Mohammad Reza Oboudi","doi":"10.1016/j.laa.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>The energy of a simple graph <em>G</em> is defined as the sum of the absolute values of eigenvalues of the adjacency matrix of <em>G</em>. For a complex matrix <em>M</em> the spread of <em>M</em> is the maximum absolute value of the differences between any two eigenvalues of <em>M</em>. Thus if <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are the eigenvalues of <em>M</em>, then the spread of <em>M</em> is <span><math><msub><mrow><mi>max</mi></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mo>⁡</mo><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></math></span>. The spread of a graph <em>G</em> is defined as the spread of its adjacency matrix and is denoted by <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The inertia of <em>G</em> is an integer triple <span><math><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></math></span> specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix of <em>G</em>. In this paper we find some bounds for energy of graphs in terms of some parameters of graphs such as rank, inertia and spread of graphs. We find some bounds for spread of graphs and matrices that improve the previous bounds. In particular, we show that if <em>G</em> is a graph with <em>m</em> edges and inertia <span><math><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></math></span>, then <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msqrt><mrow><mfrac><mrow><mn>2</mn><mi>m</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></mfrac></mrow></msqrt></math></span> and the equality holds if and only if <span><math><mi>G</mi><mo>=</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><mi>G</mi><mo>=</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><munder><munder><mrow><mi>p</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>p</mi></mrow><mo>︸</mo></munder><mrow><mi>q</mi></mrow></munder></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msub><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></mrow></msub></math></span>, for some non-negative integers <span><math><mi>r</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></math></span> and <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 112-121"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New type bounds for energy of graphs and spread of matrices\",\"authors\":\"Mohammad Reza Oboudi\",\"doi\":\"10.1016/j.laa.2024.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The energy of a simple graph <em>G</em> is defined as the sum of the absolute values of eigenvalues of the adjacency matrix of <em>G</em>. For a complex matrix <em>M</em> the spread of <em>M</em> is the maximum absolute value of the differences between any two eigenvalues of <em>M</em>. Thus if <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are the eigenvalues of <em>M</em>, then the spread of <em>M</em> is <span><math><msub><mrow><mi>max</mi></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mo>⁡</mo><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></math></span>. The spread of a graph <em>G</em> is defined as the spread of its adjacency matrix and is denoted by <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The inertia of <em>G</em> is an integer triple <span><math><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></math></span> specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix of <em>G</em>. In this paper we find some bounds for energy of graphs in terms of some parameters of graphs such as rank, inertia and spread of graphs. We find some bounds for spread of graphs and matrices that improve the previous bounds. In particular, we show that if <em>G</em> is a graph with <em>m</em> edges and inertia <span><math><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></math></span>, then <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msqrt><mrow><mfrac><mrow><mn>2</mn><mi>m</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></mfrac></mrow></msqrt></math></span> and the equality holds if and only if <span><math><mi>G</mi><mo>=</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><mi>G</mi><mo>=</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><munder><munder><mrow><mi>p</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>p</mi></mrow><mo>︸</mo></munder><mrow><mi>q</mi></mrow></munder></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msub><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></mrow></msub></math></span>, for some non-negative integers <span><math><mi>r</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></math></span> and <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><msub><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"702 \",\"pages\":\"Pages 112-121\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003306\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003306","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

简单图 G 的能量定义为 G 的邻接矩阵特征值的绝对值之和。对于复杂矩阵 M,M 的扩散是 M 的任意两个特征值之差的最大绝对值。图 G 的扩散定义为其邻接矩阵的扩散,用 s(G) 表示。G 的惯性是一个整数三元组 (n+,n-,n0),指定了 G 的邻接矩阵的正、负和零特征值的数目。在本文中,我们根据图的一些参数(如图的秩、惯性和展布)找到了图的能量的一些界限。我们发现了一些关于图和矩阵扩散的边界,这些边界改进了之前的边界。特别是,我们证明了如果 G 是一个有 m 条边且惯性为 (n+,n-,n0) 的图,那么 s(G)≥2m(n++n-)n+n- 且当且仅当 G=rKs∪tK1 或 G=rKp,...,p︸q∪tK1或 G=r1Ka1,b1∪⋯∪rhKah,bh,对于一些非负整数r,s,t,p,q和r1,a1,b1,...,rh,ah,bh,使得a1b1=⋯=ahbh,p≥2和q≥3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New type bounds for energy of graphs and spread of matrices

The energy of a simple graph G is defined as the sum of the absolute values of eigenvalues of the adjacency matrix of G. For a complex matrix M the spread of M is the maximum absolute value of the differences between any two eigenvalues of M. Thus if λ1,,λn are the eigenvalues of M, then the spread of M is max1i,jn|λiλj|. The spread of a graph G is defined as the spread of its adjacency matrix and is denoted by s(G). The inertia of G is an integer triple (n+,n,n0) specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix of G. In this paper we find some bounds for energy of graphs in terms of some parameters of graphs such as rank, inertia and spread of graphs. We find some bounds for spread of graphs and matrices that improve the previous bounds. In particular, we show that if G is a graph with m edges and inertia (n+,n,n0), then s(G)2m(n++n)n+n and the equality holds if and only if G=rKstK1 or G=rKp,,pqtK1 or G=r1Ka1,b1rhKah,bh, for some non-negative integers r,s,t,p,q and r1,a1,b1,,rh,ah,bh such that a1b1==ahbh, p2 and q3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信