Linqiang Huang , Xinping Li , Zhuo Li , Huishan Zhu , Yongli Han , Juhao Zeng , Miaoyun Wen , Hongke Zeng
{"title":"PD-1 通过 MAPK 信号通路介导小胶质细胞极化,在脑缺血/再灌注期间保护血脑屏障功能。","authors":"Linqiang Huang , Xinping Li , Zhuo Li , Huishan Zhu , Yongli Han , Juhao Zeng , Miaoyun Wen , Hongke Zeng","doi":"10.1016/j.brainresbull.2024.111055","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Cerebral ischemia is characterized by its rapid onset and high rates of recurrence, morbidity, and mortality, with blood-brain barrier (BBB) permeability playing a vital role in brain injury. Therefore, it is important to understand the molecular mechanism which regulates the BBB during cerebral ischemia.</p></div><div><h3>Materials and methods</h3><p>An <em>in vitro</em> model of oxygen-glucose deprivation (OGD) and an <em>in vivo</em> model of cerebral ischemia/reperfusion (I/R) were constructed. PD-1 overexpression vectors and vectors containing si-RNA were transfected and injected into <em>in vitro</em> and <em>in vivo</em> models. Western blotting, real-time quantitative PCR (qPCR), immunofluorescence (IF) analysis, and immunohistochemical staining were employed to evaluate the expression levels of programmed cell death-1 (PD-1), microglia M1 and M2 biomarkers, and tight junction proteins. Flow cytometry and ELISA were used to measure the levels of pro-inflammatory cytokines. The BBB permeability of brain tissues was evaluated by Evans blue dye (EBD) extravasation and transendothelial electrical resistance (TEER). Brain water content was measured to assess the extent of inflammatory exudation. The infarct volume and neurological severity score (NSS) were used to assess the severity of brain injury. Brain cell apoptosis was assessed by the TUNEL assay and hematoxylin-eosin (H&E) staining.</p></div><div><h3>Results</h3><p>PD-1 helped to convert the microglia M1 phenotype to the M2 phenotype and to reduce BBB permeability both <em>in vitro</em> and <em>in vivo</em>. Overexpression of PD-1 promoted a shift of the M1 phenotype to the M2 phenotype and reduced BBB permeability via the ERK and p38 MAPK signaling pathways. PD-1 reduced inflammatory exudation, BBB permeability, cell apoptosis, and brain injury <em>in vivo</em>.</p></div><div><h3>Conclusion</h3><p>Our present study verified that PD-1 exerts an anti-inflammatory effect by converting the microglia M1 phenotype to the M2 phenotype, reducing BBB permeability, and thereby relieves brain injury caused by cerebral ischemia. PD-1 is potential therapeutic target for brain injury caused by cerebral ischemia.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"216 ","pages":"Article 111055"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024001898/pdfft?md5=9f59e8f8342b70da3651d5f2ad31f2a8&pid=1-s2.0-S0361923024001898-main.pdf","citationCount":"0","resultStr":"{\"title\":\"PD-1 mediates microglia polarization via the MAPK signaling pathway to protect blood-brain barrier function during cerebral ischemia/reperfusion\",\"authors\":\"Linqiang Huang , Xinping Li , Zhuo Li , Huishan Zhu , Yongli Han , Juhao Zeng , Miaoyun Wen , Hongke Zeng\",\"doi\":\"10.1016/j.brainresbull.2024.111055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Cerebral ischemia is characterized by its rapid onset and high rates of recurrence, morbidity, and mortality, with blood-brain barrier (BBB) permeability playing a vital role in brain injury. Therefore, it is important to understand the molecular mechanism which regulates the BBB during cerebral ischemia.</p></div><div><h3>Materials and methods</h3><p>An <em>in vitro</em> model of oxygen-glucose deprivation (OGD) and an <em>in vivo</em> model of cerebral ischemia/reperfusion (I/R) were constructed. PD-1 overexpression vectors and vectors containing si-RNA were transfected and injected into <em>in vitro</em> and <em>in vivo</em> models. Western blotting, real-time quantitative PCR (qPCR), immunofluorescence (IF) analysis, and immunohistochemical staining were employed to evaluate the expression levels of programmed cell death-1 (PD-1), microglia M1 and M2 biomarkers, and tight junction proteins. Flow cytometry and ELISA were used to measure the levels of pro-inflammatory cytokines. The BBB permeability of brain tissues was evaluated by Evans blue dye (EBD) extravasation and transendothelial electrical resistance (TEER). Brain water content was measured to assess the extent of inflammatory exudation. The infarct volume and neurological severity score (NSS) were used to assess the severity of brain injury. Brain cell apoptosis was assessed by the TUNEL assay and hematoxylin-eosin (H&E) staining.</p></div><div><h3>Results</h3><p>PD-1 helped to convert the microglia M1 phenotype to the M2 phenotype and to reduce BBB permeability both <em>in vitro</em> and <em>in vivo</em>. Overexpression of PD-1 promoted a shift of the M1 phenotype to the M2 phenotype and reduced BBB permeability via the ERK and p38 MAPK signaling pathways. PD-1 reduced inflammatory exudation, BBB permeability, cell apoptosis, and brain injury <em>in vivo</em>.</p></div><div><h3>Conclusion</h3><p>Our present study verified that PD-1 exerts an anti-inflammatory effect by converting the microglia M1 phenotype to the M2 phenotype, reducing BBB permeability, and thereby relieves brain injury caused by cerebral ischemia. PD-1 is potential therapeutic target for brain injury caused by cerebral ischemia.</p></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":\"216 \",\"pages\":\"Article 111055\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001898/pdfft?md5=9f59e8f8342b70da3651d5f2ad31f2a8&pid=1-s2.0-S0361923024001898-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001898\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024001898","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
PD-1 mediates microglia polarization via the MAPK signaling pathway to protect blood-brain barrier function during cerebral ischemia/reperfusion
Background
Cerebral ischemia is characterized by its rapid onset and high rates of recurrence, morbidity, and mortality, with blood-brain barrier (BBB) permeability playing a vital role in brain injury. Therefore, it is important to understand the molecular mechanism which regulates the BBB during cerebral ischemia.
Materials and methods
An in vitro model of oxygen-glucose deprivation (OGD) and an in vivo model of cerebral ischemia/reperfusion (I/R) were constructed. PD-1 overexpression vectors and vectors containing si-RNA were transfected and injected into in vitro and in vivo models. Western blotting, real-time quantitative PCR (qPCR), immunofluorescence (IF) analysis, and immunohistochemical staining were employed to evaluate the expression levels of programmed cell death-1 (PD-1), microglia M1 and M2 biomarkers, and tight junction proteins. Flow cytometry and ELISA were used to measure the levels of pro-inflammatory cytokines. The BBB permeability of brain tissues was evaluated by Evans blue dye (EBD) extravasation and transendothelial electrical resistance (TEER). Brain water content was measured to assess the extent of inflammatory exudation. The infarct volume and neurological severity score (NSS) were used to assess the severity of brain injury. Brain cell apoptosis was assessed by the TUNEL assay and hematoxylin-eosin (H&E) staining.
Results
PD-1 helped to convert the microglia M1 phenotype to the M2 phenotype and to reduce BBB permeability both in vitro and in vivo. Overexpression of PD-1 promoted a shift of the M1 phenotype to the M2 phenotype and reduced BBB permeability via the ERK and p38 MAPK signaling pathways. PD-1 reduced inflammatory exudation, BBB permeability, cell apoptosis, and brain injury in vivo.
Conclusion
Our present study verified that PD-1 exerts an anti-inflammatory effect by converting the microglia M1 phenotype to the M2 phenotype, reducing BBB permeability, and thereby relieves brain injury caused by cerebral ischemia. PD-1 is potential therapeutic target for brain injury caused by cerebral ischemia.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.