利用简单、极小的卷积神经网络对阿尔茨海默病进行分类的简约方法。

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Edvard O.S. Grødem , Esten Leonardsen , Bradley J. MacIntosh , Atle Bjørnerud , Till Schellhorn , Øystein Sørensen , Inge Amlien , Anders M. Fjell , Alzheimer’s Disease Neuroimaging Initiative
{"title":"利用简单、极小的卷积神经网络对阿尔茨海默病进行分类的简约方法。","authors":"Edvard O.S. Grødem ,&nbsp;Esten Leonardsen ,&nbsp;Bradley J. MacIntosh ,&nbsp;Atle Bjørnerud ,&nbsp;Till Schellhorn ,&nbsp;Øystein Sørensen ,&nbsp;Inge Amlien ,&nbsp;Anders M. Fjell ,&nbsp;Alzheimer’s Disease Neuroimaging Initiative","doi":"10.1016/j.jneumeth.2024.110253","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><p>There is a broad interest in deploying deep learning-based classification algorithms to identify individuals with Alzheimer’s disease (AD) from healthy controls (HC) based on neuroimaging data, such as T1-weighted Magnetic Resonance Imaging (MRI). The goal of the current study is to investigate whether modern, flexible architectures such as EfficientNet provide any performance boost over more standard architectures.</p></div><div><h3>Methods:</h3><p>MRI data was sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and processed with a minimal preprocessing pipeline. Among the various architectures tested, the minimal 3D convolutional neural network SFCN stood out, composed solely of 3x3x3 convolution, batch normalization, ReLU, and max-pooling. We also examined the influence of scale on performance, testing SFCN versions with trainable parameters ranging from 720 up to 2.9 million.</p></div><div><h3>Results:</h3><p>SFCN achieves a test ROC AUC of 96.0% while EfficientNet got an ROC AUC of 94.9 %. SFCN retained high performance down to 720 trainable parameters, achieving an ROC AUC of 91.4%.</p></div><div><h3>Comparison with existing methods:</h3><p>The SFCN is compared to DenseNet and EfficientNet as well as the results of other publications in the field.</p></div><div><h3>Conclusions:</h3><p>The results indicate that using the minimal 3D convolutional neural network SFCN with a minimal preprocessing pipeline can achieve competitive performance in AD classification, challenging the necessity of employing more complex architectures with a larger number of parameters. This finding supports the efficiency of simpler deep learning models for neuroimaging-based AD diagnosis, potentially aiding in better understanding and diagnosing Alzheimer’s disease.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"411 ","pages":"Article 110253"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165027024001985/pdfft?md5=a67a2cd29e6051ebf7457b24f1b2b10f&pid=1-s2.0-S0165027024001985-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A minimalistic approach to classifying Alzheimer’s disease using simple and extremely small convolutional neural networks\",\"authors\":\"Edvard O.S. Grødem ,&nbsp;Esten Leonardsen ,&nbsp;Bradley J. MacIntosh ,&nbsp;Atle Bjørnerud ,&nbsp;Till Schellhorn ,&nbsp;Øystein Sørensen ,&nbsp;Inge Amlien ,&nbsp;Anders M. Fjell ,&nbsp;Alzheimer’s Disease Neuroimaging Initiative\",\"doi\":\"10.1016/j.jneumeth.2024.110253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background:</h3><p>There is a broad interest in deploying deep learning-based classification algorithms to identify individuals with Alzheimer’s disease (AD) from healthy controls (HC) based on neuroimaging data, such as T1-weighted Magnetic Resonance Imaging (MRI). The goal of the current study is to investigate whether modern, flexible architectures such as EfficientNet provide any performance boost over more standard architectures.</p></div><div><h3>Methods:</h3><p>MRI data was sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and processed with a minimal preprocessing pipeline. Among the various architectures tested, the minimal 3D convolutional neural network SFCN stood out, composed solely of 3x3x3 convolution, batch normalization, ReLU, and max-pooling. We also examined the influence of scale on performance, testing SFCN versions with trainable parameters ranging from 720 up to 2.9 million.</p></div><div><h3>Results:</h3><p>SFCN achieves a test ROC AUC of 96.0% while EfficientNet got an ROC AUC of 94.9 %. SFCN retained high performance down to 720 trainable parameters, achieving an ROC AUC of 91.4%.</p></div><div><h3>Comparison with existing methods:</h3><p>The SFCN is compared to DenseNet and EfficientNet as well as the results of other publications in the field.</p></div><div><h3>Conclusions:</h3><p>The results indicate that using the minimal 3D convolutional neural network SFCN with a minimal preprocessing pipeline can achieve competitive performance in AD classification, challenging the necessity of employing more complex architectures with a larger number of parameters. This finding supports the efficiency of simpler deep learning models for neuroimaging-based AD diagnosis, potentially aiding in better understanding and diagnosing Alzheimer’s disease.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"411 \",\"pages\":\"Article 110253\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165027024001985/pdfft?md5=a67a2cd29e6051ebf7457b24f1b2b10f&pid=1-s2.0-S0165027024001985-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024001985\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024001985","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:根据神经成像数据(如 T1 加权磁共振成像(MRI)),部署基于深度学习的分类算法来从健康对照组(HC)中识别阿尔茨海默病(AD)患者,受到了广泛关注。当前研究的目标是调查 EfficientNet 等灵活的现代架构与标准架构相比是否能提高性能:核磁共振成像数据来自阿尔茨海默氏症神经成像计划(ADNI),并使用最低限度的预处理管道进行处理。在测试的各种架构中,仅由 3x3x3 卷积、批量归一化、ReLU 和最大池化组成的最小三维卷积神经网络 SFCN 脱颖而出。我们还研究了规模对性能的影响,测试了可训练参数从 720 到 290 万的 SFCN 版本:结果:SFCN 的测试 ROC AUC 为 96.0%,而 EfficientNet 的 ROC AUC 为 94.9%。SFCN 在可训练参数低至 720 个时仍保持了较高的性能,ROC AUC 达到 91.4%:与现有方法的比较:将 SFCN 与 DenseNet 和 EfficientNet 以及该领域其他出版物的结果进行了比较:结果表明,使用最小的三维卷积神经网络 SFCN 和最小的预处理管道,可以在 AD 分类中获得有竞争力的性能,从而挑战了采用参数数量更多的更复杂架构的必要性。这一发现支持将更简单的深度学习模型用于基于神经影像的阿兹海默症诊断,从而有可能帮助更好地理解和诊断阿兹海默症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A minimalistic approach to classifying Alzheimer’s disease using simple and extremely small convolutional neural networks

A minimalistic approach to classifying Alzheimer’s disease using simple and extremely small convolutional neural networks

Background:

There is a broad interest in deploying deep learning-based classification algorithms to identify individuals with Alzheimer’s disease (AD) from healthy controls (HC) based on neuroimaging data, such as T1-weighted Magnetic Resonance Imaging (MRI). The goal of the current study is to investigate whether modern, flexible architectures such as EfficientNet provide any performance boost over more standard architectures.

Methods:

MRI data was sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and processed with a minimal preprocessing pipeline. Among the various architectures tested, the minimal 3D convolutional neural network SFCN stood out, composed solely of 3x3x3 convolution, batch normalization, ReLU, and max-pooling. We also examined the influence of scale on performance, testing SFCN versions with trainable parameters ranging from 720 up to 2.9 million.

Results:

SFCN achieves a test ROC AUC of 96.0% while EfficientNet got an ROC AUC of 94.9 %. SFCN retained high performance down to 720 trainable parameters, achieving an ROC AUC of 91.4%.

Comparison with existing methods:

The SFCN is compared to DenseNet and EfficientNet as well as the results of other publications in the field.

Conclusions:

The results indicate that using the minimal 3D convolutional neural network SFCN with a minimal preprocessing pipeline can achieve competitive performance in AD classification, challenging the necessity of employing more complex architectures with a larger number of parameters. This finding supports the efficiency of simpler deep learning models for neuroimaging-based AD diagnosis, potentially aiding in better understanding and diagnosing Alzheimer’s disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信