{"title":"关于矩阵截断问题二","authors":"Conrad Mädler, Konrad Schmüdgen","doi":"10.1016/j.laa.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>We continue the study of truncated matrix-valued moment problems begun in <span><span>[12]</span></span>. Let <span><math><mi>q</mi><mo>∈</mo><mi>N</mi></math></span>. Suppose that <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> is a measurable space and <span><math><mi>E</mi></math></span> is a finite-dimensional vector space of measurable mappings of <span><math><mi>X</mi></math></span> into <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, the Hermitian <span><math><mi>q</mi><mo>×</mo><mi>q</mi></math></span> matrices. A linear functional Λ on <span><math><mi>E</mi></math></span> is called a moment functional if there exists a positive <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-valued measure <em>μ</em> on <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> such that <span><math><mi>Λ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>X</mi></mrow></msub><mo>〈</mo><mi>F</mi><mo>,</mo><mi>d</mi><mi>μ</mi><mo>〉</mo></math></span> for <span><math><mi>F</mi><mo>∈</mo><mi>E</mi></math></span>.</p><p>In this paper a number of special topics on the truncated matricial moment problem are treated. We restate a result from <span><span>[11]</span></span> to obtain a matricial version of the flat extension theorem. Assuming that <span><math><mi>X</mi></math></span> is a compact space and all elements of <span><math><mi>E</mi></math></span> are continuous on <span><math><mi>X</mi></math></span> we characterize moment functionals in terms of positivity and obtain an ordered maximal mass representing measure for each moment functional. The set of masses of representing measures at a fixed point and some related sets are studied. The class of commutative matrix moment functionals is investigated. We generalize the apolar scalar product for homogeneous polynomials to the matrix case and apply this to the matricial truncated moment problem.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 63-97"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003288/pdfft?md5=a3e36b081f294697806308ae16a2e22e&pid=1-s2.0-S0024379524003288-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the matricial truncated moment problem. II\",\"authors\":\"Conrad Mädler, Konrad Schmüdgen\",\"doi\":\"10.1016/j.laa.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We continue the study of truncated matrix-valued moment problems begun in <span><span>[12]</span></span>. Let <span><math><mi>q</mi><mo>∈</mo><mi>N</mi></math></span>. Suppose that <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> is a measurable space and <span><math><mi>E</mi></math></span> is a finite-dimensional vector space of measurable mappings of <span><math><mi>X</mi></math></span> into <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, the Hermitian <span><math><mi>q</mi><mo>×</mo><mi>q</mi></math></span> matrices. A linear functional Λ on <span><math><mi>E</mi></math></span> is called a moment functional if there exists a positive <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-valued measure <em>μ</em> on <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> such that <span><math><mi>Λ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>X</mi></mrow></msub><mo>〈</mo><mi>F</mi><mo>,</mo><mi>d</mi><mi>μ</mi><mo>〉</mo></math></span> for <span><math><mi>F</mi><mo>∈</mo><mi>E</mi></math></span>.</p><p>In this paper a number of special topics on the truncated matricial moment problem are treated. We restate a result from <span><span>[11]</span></span> to obtain a matricial version of the flat extension theorem. Assuming that <span><math><mi>X</mi></math></span> is a compact space and all elements of <span><math><mi>E</mi></math></span> are continuous on <span><math><mi>X</mi></math></span> we characterize moment functionals in terms of positivity and obtain an ordered maximal mass representing measure for each moment functional. The set of masses of representing measures at a fixed point and some related sets are studied. The class of commutative matrix moment functionals is investigated. We generalize the apolar scalar product for homogeneous polynomials to the matrix case and apply this to the matricial truncated moment problem.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"702 \",\"pages\":\"Pages 63-97\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003288/pdfft?md5=a3e36b081f294697806308ae16a2e22e&pid=1-s2.0-S0024379524003288-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003288\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003288","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们继续研究[12]中开始的截断矩阵值矩问题。假设 q∈N.假设 (X,X) 是一个可测空间,而 E 是一个有限维向量空间,是 X 进入赫米特 q×q 矩阵 Hq 的可测映射。如果在 (X,X) 上存在一个正的 Hq 值度量 μ,使得Λ(F)=∫X〈F,dμ〉用于 F∈E,则 E 上的线性函数Λ称为矩函数。我们重述了[11]中的一个结果,得到了平延伸定理的矩阵版本。假设 X 是一个紧凑空间,且 E 的所有元素在 X 上都是连续的,我们用正性来描述矩函数,并为每个矩函数得到一个有序的最大质量代表量。我们还研究了定点代表度量的质量集和一些相关集。研究了交换矩阵矩函数类。我们将同质多项式的极点标量积推广到矩阵情形,并将其应用于矩阵截断矩问题。
We continue the study of truncated matrix-valued moment problems begun in [12]. Let . Suppose that is a measurable space and is a finite-dimensional vector space of measurable mappings of into , the Hermitian matrices. A linear functional Λ on is called a moment functional if there exists a positive -valued measure μ on such that for .
In this paper a number of special topics on the truncated matricial moment problem are treated. We restate a result from [11] to obtain a matricial version of the flat extension theorem. Assuming that is a compact space and all elements of are continuous on we characterize moment functionals in terms of positivity and obtain an ordered maximal mass representing measure for each moment functional. The set of masses of representing measures at a fixed point and some related sets are studied. The class of commutative matrix moment functionals is investigated. We generalize the apolar scalar product for homogeneous polynomials to the matrix case and apply this to the matricial truncated moment problem.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.