{"title":"cigR 基因对副伤寒甲型沙门氏菌体外和体内致病性的影响。","authors":"Junlei Yin, Lijun Wang, Ronghua Shen, Jinjiao He, Shaozu Li, Huajian Wang, Zhao Cheng","doi":"10.1093/femsle/fnae067","DOIUrl":null,"url":null,"abstract":"<p><p>Salmonella Paratyphi A is the causative agent of paratyphoid fever A which is a serious threat to human health in many countries. The cigR gene located in Salmonella pathogenicity island 3 is a type III secretion system 2 effector gene. However, the influence of cigR gene on the pathogenicity of Salmonella Paratyphi A remains unclear. Here, a cigR gene deletion mutant of Salmonella Paratyphi A was constructed and its pathogenic changes were also evaluated. It was found that both the growth and biochemical features have not changed after the loss of cigR, but the absence of cigR significantly enhanced the replication and/or survival ability in phorbol-12-myristate-13-acetate (PMA)-differentiated human macrophage THP-1 cells and in mouse; the proliferative activity and apoptosis of PMA-differentiated THP-1 cell were significantly decreased and increased, respectively, after the lack of cigR gene; and the mutant showed increased virulence to a mouse infection model by decreased half-lethal dose (LD50) value and enhanced the proliferation ratio of bacteria in vivo. These results demonstrated that CigR is an anti-virulence factor and plays an important role in the pathogenicity of Salmonella Paratyphi A.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of cigR gene on the pathogenicity of Salmonella paratyphi A in vitro and in vivo.\",\"authors\":\"Junlei Yin, Lijun Wang, Ronghua Shen, Jinjiao He, Shaozu Li, Huajian Wang, Zhao Cheng\",\"doi\":\"10.1093/femsle/fnae067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salmonella Paratyphi A is the causative agent of paratyphoid fever A which is a serious threat to human health in many countries. The cigR gene located in Salmonella pathogenicity island 3 is a type III secretion system 2 effector gene. However, the influence of cigR gene on the pathogenicity of Salmonella Paratyphi A remains unclear. Here, a cigR gene deletion mutant of Salmonella Paratyphi A was constructed and its pathogenic changes were also evaluated. It was found that both the growth and biochemical features have not changed after the loss of cigR, but the absence of cigR significantly enhanced the replication and/or survival ability in phorbol-12-myristate-13-acetate (PMA)-differentiated human macrophage THP-1 cells and in mouse; the proliferative activity and apoptosis of PMA-differentiated THP-1 cell were significantly decreased and increased, respectively, after the lack of cigR gene; and the mutant showed increased virulence to a mouse infection model by decreased half-lethal dose (LD50) value and enhanced the proliferation ratio of bacteria in vivo. These results demonstrated that CigR is an anti-virulence factor and plays an important role in the pathogenicity of Salmonella Paratyphi A.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae067\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae067","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
A 型副伤寒沙门氏菌是 A 型副伤寒的病原体,在许多国家严重威胁人类健康。位于沙门氏菌致病性岛 3(SPI3)的 cigR 基因是一个 III 型分泌系统 2(T3SS2)效应基因。然而,cigR 基因对副伤寒甲型沙门氏菌致病性的影响仍不清楚。本文构建了一种 cigR 基因缺失的副伤寒甲型沙门氏菌突变体,并对其致病性变化进行了评估。研究发现,缺失 cigR 基因后,副伤寒 A 型沙门氏菌的生长和生化特征均未发生变化,但缺失 cigR 基因后,其在光稳定-12-肉豆蔻酸-13-乙酸酯(PMA)分化的人巨噬细胞 THP-1 细胞和小鼠体内的复制和/或存活能力显著增强;缺乏 cigR 基因后,PMA 分化的 THP-1 细胞的增殖活性和凋亡率分别显著降低和增加;突变体对小鼠感染模型的毒力增强,半致死剂量(LD50)值降低,体内细菌的增殖率提高。这些结果表明,CigR 是一种抗病毒因子,在副伤寒甲型沙门氏菌的致病性中起着重要作用。
The influence of cigR gene on the pathogenicity of Salmonella paratyphi A in vitro and in vivo.
Salmonella Paratyphi A is the causative agent of paratyphoid fever A which is a serious threat to human health in many countries. The cigR gene located in Salmonella pathogenicity island 3 is a type III secretion system 2 effector gene. However, the influence of cigR gene on the pathogenicity of Salmonella Paratyphi A remains unclear. Here, a cigR gene deletion mutant of Salmonella Paratyphi A was constructed and its pathogenic changes were also evaluated. It was found that both the growth and biochemical features have not changed after the loss of cigR, but the absence of cigR significantly enhanced the replication and/or survival ability in phorbol-12-myristate-13-acetate (PMA)-differentiated human macrophage THP-1 cells and in mouse; the proliferative activity and apoptosis of PMA-differentiated THP-1 cell were significantly decreased and increased, respectively, after the lack of cigR gene; and the mutant showed increased virulence to a mouse infection model by decreased half-lethal dose (LD50) value and enhanced the proliferation ratio of bacteria in vivo. These results demonstrated that CigR is an anti-virulence factor and plays an important role in the pathogenicity of Salmonella Paratyphi A.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.