Brett J. Hilton, Jarred M. Griffin, James W. Fawcett, Frank Bradke
{"title":"神经元成熟与轴突再生:解除电路固定以实现修复","authors":"Brett J. Hilton, Jarred M. Griffin, James W. Fawcett, Frank Bradke","doi":"10.1038/s41583-024-00849-3","DOIUrl":null,"url":null,"abstract":"Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease. During their maturation, mammalian neurons lose the capacity to regrow their axons after an injury. Here, Hilton et al. explore the neuron maturation processes that limit axon regeneration, including changes in gene expression, cytoskeletal dynamics, and intracellular signalling and trafficking.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 10","pages":"649-667"},"PeriodicalIF":28.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuronal maturation and axon regeneration: unfixing circuitry to enable repair\",\"authors\":\"Brett J. Hilton, Jarred M. Griffin, James W. Fawcett, Frank Bradke\",\"doi\":\"10.1038/s41583-024-00849-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease. During their maturation, mammalian neurons lose the capacity to regrow their axons after an injury. Here, Hilton et al. explore the neuron maturation processes that limit axon regeneration, including changes in gene expression, cytoskeletal dynamics, and intracellular signalling and trafficking.\",\"PeriodicalId\":49142,\"journal\":{\"name\":\"Nature Reviews Neuroscience\",\"volume\":\"25 10\",\"pages\":\"649-667\"},\"PeriodicalIF\":28.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41583-024-00849-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41583-024-00849-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neuronal maturation and axon regeneration: unfixing circuitry to enable repair
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease. During their maturation, mammalian neurons lose the capacity to regrow their axons after an injury. Here, Hilton et al. explore the neuron maturation processes that limit axon regeneration, including changes in gene expression, cytoskeletal dynamics, and intracellular signalling and trafficking.
期刊介绍:
Nature Reviews Neuroscience is a multidisciplinary journal that covers various fields within neuroscience, aiming to offer a comprehensive understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience, facilitated by powerful experimental techniques and theoretical approaches, have made enduring neurobiological questions more accessible. Nature Reviews Neuroscience serves as a reliable and accessible resource, addressing the breadth and depth of modern neuroscience. It acts as an authoritative and engaging reference for scientists interested in all aspects of neuroscience.