R2 不应用于描述行为经济贴现和需求模型。

IF 1.4 3区 心理学 Q4 BEHAVIORAL SCIENCES
Brett W. Gelino, Justin C. Strickland, Matthew W. Johnson
{"title":"R2 不应用于描述行为经济贴现和需求模型。","authors":"Brett W. Gelino,&nbsp;Justin C. Strickland,&nbsp;Matthew W. Johnson","doi":"10.1002/jeab.4200","DOIUrl":null,"url":null,"abstract":"<p>Literature concerning operant behavioral economics shows a strong preference for the coefficient of determination (<i>R</i><sup>2</sup>) metric to (a) describe how well an applied model accounts for variance and (b) depict the quality of collected data. Yet <i>R</i><sup>2</sup> is incompatible with nonlinear modeling. In this report, we provide an updated discussion of the concerns with <i>R</i><sup>2</sup>. We first review recent articles that have been published in the <i>Journal of the Experimental Analysis of Behavior</i> that employ nonlinear models, noting recent trends in goodness-of-fit reporting, including the continued reliance on <i>R</i><sup>2</sup>. We then examine the tendency for these metrics to bias against linear-like patterns via a positive correlation between goodness of fit and the primary outputs of behavioral-economic modeling. Mathematically, <i>R</i><sup>2</sup> is systematically more stringent for lower values for discounting parameters (e.g., <i>k</i>) in discounting studies and lower values for the elasticity parameter (α) in demand analysis. The study results suggest there may be heterogeneity in how this bias emerges in data sets of varied composition and origin. There are limitations when using any goodness-of-fit measure to assess the systematic nature of data in behavioral-economic studies, and to address those we recommend the use of algorithms that test fundamental expectations of the data.</p>","PeriodicalId":17411,"journal":{"name":"Journal of the experimental analysis of behavior","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"R2 should not be used to describe behavioral-economic discounting and demand models\",\"authors\":\"Brett W. Gelino,&nbsp;Justin C. Strickland,&nbsp;Matthew W. Johnson\",\"doi\":\"10.1002/jeab.4200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Literature concerning operant behavioral economics shows a strong preference for the coefficient of determination (<i>R</i><sup>2</sup>) metric to (a) describe how well an applied model accounts for variance and (b) depict the quality of collected data. Yet <i>R</i><sup>2</sup> is incompatible with nonlinear modeling. In this report, we provide an updated discussion of the concerns with <i>R</i><sup>2</sup>. We first review recent articles that have been published in the <i>Journal of the Experimental Analysis of Behavior</i> that employ nonlinear models, noting recent trends in goodness-of-fit reporting, including the continued reliance on <i>R</i><sup>2</sup>. We then examine the tendency for these metrics to bias against linear-like patterns via a positive correlation between goodness of fit and the primary outputs of behavioral-economic modeling. Mathematically, <i>R</i><sup>2</sup> is systematically more stringent for lower values for discounting parameters (e.g., <i>k</i>) in discounting studies and lower values for the elasticity parameter (α) in demand analysis. The study results suggest there may be heterogeneity in how this bias emerges in data sets of varied composition and origin. There are limitations when using any goodness-of-fit measure to assess the systematic nature of data in behavioral-economic studies, and to address those we recommend the use of algorithms that test fundamental expectations of the data.</p>\",\"PeriodicalId\":17411,\"journal\":{\"name\":\"Journal of the experimental analysis of behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the experimental analysis of behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jeab.4200\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the experimental analysis of behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jeab.4200","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有关操作行为经济学的文献显示,人们非常喜欢用判定系数(R2)指标来(a)描述应用模型对方差的解释程度,以及(b)描述所收集数据的质量。然而,R2 与非线性建模并不兼容。在本报告中,我们将对 R2 的问题进行最新讨论。我们首先回顾了最近发表在《行为实验分析期刊》上的采用非线性模型的文章,注意到拟合优度报告的最新趋势,包括对 R2 的持续依赖。然后,我们通过拟合优度与行为经济模型主要输出结果之间的正相关关系,研究了这些指标偏向于线性模式的趋势。从数学角度看,在贴现研究中,贴现参数(如 k)值越低,需求分析中的弹性参数(α)值越低,R2 就越严格。研究结果表明,在不同组成和来源的数据集中,这种偏差的出现可能存在差异。使用任何拟合优度来评估行为经济学研究中数据的系统性都存在局限性,为了解决这些问题,我们建议使用测试数据基本预期的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
R2 should not be used to describe behavioral-economic discounting and demand models

Literature concerning operant behavioral economics shows a strong preference for the coefficient of determination (R2) metric to (a) describe how well an applied model accounts for variance and (b) depict the quality of collected data. Yet R2 is incompatible with nonlinear modeling. In this report, we provide an updated discussion of the concerns with R2. We first review recent articles that have been published in the Journal of the Experimental Analysis of Behavior that employ nonlinear models, noting recent trends in goodness-of-fit reporting, including the continued reliance on R2. We then examine the tendency for these metrics to bias against linear-like patterns via a positive correlation between goodness of fit and the primary outputs of behavioral-economic modeling. Mathematically, R2 is systematically more stringent for lower values for discounting parameters (e.g., k) in discounting studies and lower values for the elasticity parameter (α) in demand analysis. The study results suggest there may be heterogeneity in how this bias emerges in data sets of varied composition and origin. There are limitations when using any goodness-of-fit measure to assess the systematic nature of data in behavioral-economic studies, and to address those we recommend the use of algorithms that test fundamental expectations of the data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
14.80%
发文量
83
审稿时长
>12 weeks
期刊介绍: Journal of the Experimental Analysis of Behavior is primarily for the original publication of experiments relevant to the behavior of individual organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信