Fei Ran Li , Mia Gemayel , Maxime Lévesque , Siyan Wang , Camila Franco Suarez , Massimo Avoli
{"title":"低浓度二甲基亚砜(dmso)可调节 4-氨基吡啶体外模型中的癫痫同步化。","authors":"Fei Ran Li , Mia Gemayel , Maxime Lévesque , Siyan Wang , Camila Franco Suarez , Massimo Avoli","doi":"10.1016/j.jneumeth.2024.110255","DOIUrl":null,"url":null,"abstract":"<div><p>Dimethyl sulfoxide (DMSO) is commonly used to dissolve water-insoluble drugs due to its dipolar and aprotic properties. It also serves as a vehicle in many pharmacological studies. However, it has been reported that DMSO can induce seizures in human patients, lower seizure threshold <em>in vivo</em>, and modulate ion receptors activities <em>in vitro</em>. Therefore, we investigated here the effect of 0.03 % and 0.06 % DMSO, which are 10–50 times lower than what usually employed in previous studies, in the 4-aminopyridine (4AP) model of epileptiform synchronization in male mouse brain slices. We found that 0.03 % and 0.06 % DMSO increase 4AP-induced ictal discharge rate, while 0.06 % DMSO decreases ictal discharge duration. Our results suggest that the effects of DMSO on neuronal excitability deserve further analysis and that investigators need to be aware of its confounding effect as a solvent, even at very low concentrations.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"411 ","pages":"Article 110255"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low concentration dimethyl sulfoxide (DMSO) modulates epileptiform synchronization in the 4-aminopyridine in vitro model\",\"authors\":\"Fei Ran Li , Mia Gemayel , Maxime Lévesque , Siyan Wang , Camila Franco Suarez , Massimo Avoli\",\"doi\":\"10.1016/j.jneumeth.2024.110255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dimethyl sulfoxide (DMSO) is commonly used to dissolve water-insoluble drugs due to its dipolar and aprotic properties. It also serves as a vehicle in many pharmacological studies. However, it has been reported that DMSO can induce seizures in human patients, lower seizure threshold <em>in vivo</em>, and modulate ion receptors activities <em>in vitro</em>. Therefore, we investigated here the effect of 0.03 % and 0.06 % DMSO, which are 10–50 times lower than what usually employed in previous studies, in the 4-aminopyridine (4AP) model of epileptiform synchronization in male mouse brain slices. We found that 0.03 % and 0.06 % DMSO increase 4AP-induced ictal discharge rate, while 0.06 % DMSO decreases ictal discharge duration. Our results suggest that the effects of DMSO on neuronal excitability deserve further analysis and that investigators need to be aware of its confounding effect as a solvent, even at very low concentrations.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"411 \",\"pages\":\"Article 110255\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002000\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024002000","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Low concentration dimethyl sulfoxide (DMSO) modulates epileptiform synchronization in the 4-aminopyridine in vitro model
Dimethyl sulfoxide (DMSO) is commonly used to dissolve water-insoluble drugs due to its dipolar and aprotic properties. It also serves as a vehicle in many pharmacological studies. However, it has been reported that DMSO can induce seizures in human patients, lower seizure threshold in vivo, and modulate ion receptors activities in vitro. Therefore, we investigated here the effect of 0.03 % and 0.06 % DMSO, which are 10–50 times lower than what usually employed in previous studies, in the 4-aminopyridine (4AP) model of epileptiform synchronization in male mouse brain slices. We found that 0.03 % and 0.06 % DMSO increase 4AP-induced ictal discharge rate, while 0.06 % DMSO decreases ictal discharge duration. Our results suggest that the effects of DMSO on neuronal excitability deserve further analysis and that investigators need to be aware of its confounding effect as a solvent, even at very low concentrations.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.