Xiaohui Zhang , Eric C. Landsness , Hanyang Miao , Wei Chen , Michelle J. Tang , Lindsey M. Brier , Joseph P. Culver , Jin-Moo Lee , Mark A. Anastasio
{"title":"基于注意力的 CNN-BiLSTM,用于时空宽场钙成像数据的睡眠状态分类。","authors":"Xiaohui Zhang , Eric C. Landsness , Hanyang Miao , Wei Chen , Michelle J. Tang , Lindsey M. Brier , Joseph P. Culver , Jin-Moo Lee , Mark A. Anastasio","doi":"10.1016/j.jneumeth.2024.110250","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired.</p></div><div><h3>New method</h3><p>A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep.</p></div><div><h3>Results</h3><p>Sleep states were classified with an accuracy of 84 % and Cohen’s <em>κ</em> of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner.</p></div><div><h3>Comparison with existing method</h3><p>On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a <em>κ</em> of 0.67, comparable to a <em>κ</em> of 0.65 corresponding to the human EEG/EMG-based scoring.</p></div><div><h3>Conclusions</h3><p>The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"411 ","pages":"Article 110250"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016502702400195X/pdfft?md5=28a84841e7c1b572d74d7ed45dcf27d4&pid=1-s2.0-S016502702400195X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Attention-based CNN-BiLSTM for sleep state classification of spatiotemporal wide-field calcium imaging data\",\"authors\":\"Xiaohui Zhang , Eric C. Landsness , Hanyang Miao , Wei Chen , Michelle J. Tang , Lindsey M. Brier , Joseph P. Culver , Jin-Moo Lee , Mark A. Anastasio\",\"doi\":\"10.1016/j.jneumeth.2024.110250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired.</p></div><div><h3>New method</h3><p>A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep.</p></div><div><h3>Results</h3><p>Sleep states were classified with an accuracy of 84 % and Cohen’s <em>κ</em> of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner.</p></div><div><h3>Comparison with existing method</h3><p>On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a <em>κ</em> of 0.67, comparable to a <em>κ</em> of 0.65 corresponding to the human EEG/EMG-based scoring.</p></div><div><h3>Conclusions</h3><p>The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"411 \",\"pages\":\"Article 110250\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016502702400195X/pdfft?md5=28a84841e7c1b572d74d7ed45dcf27d4&pid=1-s2.0-S016502702400195X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016502702400195X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016502702400195X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Attention-based CNN-BiLSTM for sleep state classification of spatiotemporal wide-field calcium imaging data
Background
Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired.
New method
A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep.
Results
Sleep states were classified with an accuracy of 84 % and Cohen’s κ of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner.
Comparison with existing method
On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a κ of 0.67, comparable to a κ of 0.65 corresponding to the human EEG/EMG-based scoring.
Conclusions
The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.