基于注意力的 CNN-BiLSTM,用于时空宽场钙成像数据的睡眠状态分类。

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Xiaohui Zhang , Eric C. Landsness , Hanyang Miao , Wei Chen , Michelle J. Tang , Lindsey M. Brier , Joseph P. Culver , Jin-Moo Lee , Mark A. Anastasio
{"title":"基于注意力的 CNN-BiLSTM,用于时空宽场钙成像数据的睡眠状态分类。","authors":"Xiaohui Zhang ,&nbsp;Eric C. Landsness ,&nbsp;Hanyang Miao ,&nbsp;Wei Chen ,&nbsp;Michelle J. Tang ,&nbsp;Lindsey M. Brier ,&nbsp;Joseph P. Culver ,&nbsp;Jin-Moo Lee ,&nbsp;Mark A. Anastasio","doi":"10.1016/j.jneumeth.2024.110250","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired.</p></div><div><h3>New method</h3><p>A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep.</p></div><div><h3>Results</h3><p>Sleep states were classified with an accuracy of 84 % and Cohen’s <em>κ</em> of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner.</p></div><div><h3>Comparison with existing method</h3><p>On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a <em>κ</em> of 0.67, comparable to a <em>κ</em> of 0.65 corresponding to the human EEG/EMG-based scoring.</p></div><div><h3>Conclusions</h3><p>The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"411 ","pages":"Article 110250"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016502702400195X/pdfft?md5=28a84841e7c1b572d74d7ed45dcf27d4&pid=1-s2.0-S016502702400195X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Attention-based CNN-BiLSTM for sleep state classification of spatiotemporal wide-field calcium imaging data\",\"authors\":\"Xiaohui Zhang ,&nbsp;Eric C. Landsness ,&nbsp;Hanyang Miao ,&nbsp;Wei Chen ,&nbsp;Michelle J. Tang ,&nbsp;Lindsey M. Brier ,&nbsp;Joseph P. Culver ,&nbsp;Jin-Moo Lee ,&nbsp;Mark A. Anastasio\",\"doi\":\"10.1016/j.jneumeth.2024.110250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired.</p></div><div><h3>New method</h3><p>A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep.</p></div><div><h3>Results</h3><p>Sleep states were classified with an accuracy of 84 % and Cohen’s <em>κ</em> of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner.</p></div><div><h3>Comparison with existing method</h3><p>On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a <em>κ</em> of 0.67, comparable to a <em>κ</em> of 0.65 corresponding to the human EEG/EMG-based scoring.</p></div><div><h3>Conclusions</h3><p>The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"411 \",\"pages\":\"Article 110250\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016502702400195X/pdfft?md5=28a84841e7c1b572d74d7ed45dcf27d4&pid=1-s2.0-S016502702400195X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016502702400195X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016502702400195X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:利用基因编码的钙离子指示剂进行宽场钙成像(WFCI)可对小鼠神经元活动进行时空记录。当应用于睡眠研究时,WFCI 数据会通过辅助脑电图和肌电图记录,手动分为清醒、非快速眼动(NREM)和快速眼动等睡眠状态。然而,这一过程耗时长、具有侵入性,而且评分者之间和评分者内部的可靠性往往很低。因此,我们需要一种能对时空 WFCI 数据进行操作的自动睡眠状态分类方法:新方法:我们提出了一种混合网络架构,该架构由用于提取图像帧空间特征的卷积神经网络(CNN)和具有注意力机制的双向长短期记忆网络(BiLSTM)组成,用于识别不同时间点之间的时间依赖关系,从而将 WFCI 数据分为清醒、NREM 和 REM 睡眠状态:睡眠状态分类的准确率为 84%,Cohen's κ 为 0.64。梯度加权分类激活图显示,在将 WFCI 数据分类为 NREM 睡眠时,大脑皮层的前额区更为重要,而后部区域对识别清醒状态的贡献最大。注意力得分表明,所提出的网络以特定状态的方式关注短程和长程时间依赖性:与现有方法的比较:在保持、重复 3 小时的 WFCI 记录中,CNN-BiLSTM 的κ值达到了 0.67,与基于人类 EEG/EMG 的评分κ值 0.65 相当:结论:CNN-BiLSTM 能有效地从时空 WFCI 数据中对睡眠状态进行分类,这将使 WFCI 在睡眠研究中得到更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention-based CNN-BiLSTM for sleep state classification of spatiotemporal wide-field calcium imaging data

Background

Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired.

New method

A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep.

Results

Sleep states were classified with an accuracy of 84 % and Cohen’s κ of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner.

Comparison with existing method

On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a κ of 0.67, comparable to a κ of 0.65 corresponding to the human EEG/EMG-based scoring.

Conclusions

The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信