利用可解释三维卷积神经网络解码微皮层图信号,预测手指运动

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Chao-Hung Kuo , Guan-Tze Liu , Chi-En Lee , Jing Wu , Kaitlyn Casimo , Kurt E. Weaver , Yu-Chun Lo , You-Yin Chen , Wen-Cheng Huang , Jeffrey G. Ojemann
{"title":"利用可解释三维卷积神经网络解码微皮层图信号,预测手指运动","authors":"Chao-Hung Kuo ,&nbsp;Guan-Tze Liu ,&nbsp;Chi-En Lee ,&nbsp;Jing Wu ,&nbsp;Kaitlyn Casimo ,&nbsp;Kurt E. Weaver ,&nbsp;Yu-Chun Lo ,&nbsp;You-Yin Chen ,&nbsp;Wen-Cheng Huang ,&nbsp;Jeffrey G. Ojemann","doi":"10.1016/j.jneumeth.2024.110251","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Electroencephalography (EEG) and electrocorticography (ECoG) recordings have been used to decode finger movements by analyzing brain activity. Traditional methods focused on single bandpass power changes for movement decoding, utilizing machine learning models requiring manual feature extraction.</p></div><div><h3>New method</h3><p>This study introduces a 3D convolutional neural network (3D-CNN) model to decode finger movements using ECoG data. The model employs adaptive, explainable AI (xAI) techniques to interpret the physiological relevance of brain signals. ECoG signals from epilepsy patients during awake craniotomy were processed to extract power spectral density across multiple frequency bands. These data formed a 3D matrix used to train the 3D-CNN to predict finger trajectories.</p></div><div><h3>Results</h3><p>The 3D-CNN model showed significant accuracy in predicting finger movements, with root-mean-square error (RMSE) values of 0.26–0.38 for single finger movements and 0.20–0.24 for combined movements. Explainable AI techniques, Grad-CAM and SHAP, identified the high gamma (HG) band as crucial for movement prediction, showing specific cortical regions involved in different finger movements. These findings highlighted the physiological significance of the HG band in motor control.</p></div><div><h3>Comparison with existing methods</h3><p>The 3D-CNN model outperformed traditional machine learning approaches by effectively capturing spatial and temporal patterns in ECoG data. The use of xAI techniques provided clearer insights into the model's decision-making process, unlike the \"black box\" nature of standard deep learning models.</p></div><div><h3>Conclusions</h3><p>The proposed 3D-CNN model, combined with xAI methods, enhances the decoding accuracy of finger movements from ECoG data. This approach offers a more efficient and interpretable solution for brain-computer interface (BCI) applications, emphasizing the HG band's role in motor control.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"411 ","pages":"Article 110251"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding micro-electrocorticographic signals by using explainable 3D convolutional neural network to predict finger movements\",\"authors\":\"Chao-Hung Kuo ,&nbsp;Guan-Tze Liu ,&nbsp;Chi-En Lee ,&nbsp;Jing Wu ,&nbsp;Kaitlyn Casimo ,&nbsp;Kurt E. Weaver ,&nbsp;Yu-Chun Lo ,&nbsp;You-Yin Chen ,&nbsp;Wen-Cheng Huang ,&nbsp;Jeffrey G. Ojemann\",\"doi\":\"10.1016/j.jneumeth.2024.110251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Electroencephalography (EEG) and electrocorticography (ECoG) recordings have been used to decode finger movements by analyzing brain activity. Traditional methods focused on single bandpass power changes for movement decoding, utilizing machine learning models requiring manual feature extraction.</p></div><div><h3>New method</h3><p>This study introduces a 3D convolutional neural network (3D-CNN) model to decode finger movements using ECoG data. The model employs adaptive, explainable AI (xAI) techniques to interpret the physiological relevance of brain signals. ECoG signals from epilepsy patients during awake craniotomy were processed to extract power spectral density across multiple frequency bands. These data formed a 3D matrix used to train the 3D-CNN to predict finger trajectories.</p></div><div><h3>Results</h3><p>The 3D-CNN model showed significant accuracy in predicting finger movements, with root-mean-square error (RMSE) values of 0.26–0.38 for single finger movements and 0.20–0.24 for combined movements. Explainable AI techniques, Grad-CAM and SHAP, identified the high gamma (HG) band as crucial for movement prediction, showing specific cortical regions involved in different finger movements. These findings highlighted the physiological significance of the HG band in motor control.</p></div><div><h3>Comparison with existing methods</h3><p>The 3D-CNN model outperformed traditional machine learning approaches by effectively capturing spatial and temporal patterns in ECoG data. The use of xAI techniques provided clearer insights into the model's decision-making process, unlike the \\\"black box\\\" nature of standard deep learning models.</p></div><div><h3>Conclusions</h3><p>The proposed 3D-CNN model, combined with xAI methods, enhances the decoding accuracy of finger movements from ECoG data. This approach offers a more efficient and interpretable solution for brain-computer interface (BCI) applications, emphasizing the HG band's role in motor control.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"411 \",\"pages\":\"Article 110251\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024001961\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024001961","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:脑电图(EEG)和脑皮层电图(ECoG)记录已被用于通过分析大脑活动来解码手指运动。传统方法侧重于利用单频带通功率变化进行运动解码,利用机器学习模型需要手动提取特征:新方法:本研究采用三维卷积神经网络(3D-CNN)模型,利用心电图数据解码手指运动。该模型采用自适应、可解释的人工智能(xAI)技术来解释大脑信号的生理相关性。在清醒开颅手术过程中,对癫痫患者的心电图信号进行了处理,以提取多个频段的功率谱密度。这些数据形成了一个 3D 矩阵,用于训练 3D-CNN 预测手指轨迹:结果:3D-CNN 模型在预测手指运动方面显示出显著的准确性,单指运动的均方根误差(RMSE)值为 0.26-0.38 ,组合运动的均方根误差(RMSE)值为 0.20-0.24 。可解释的人工智能技术--Grad-CAM 和 SHAP--确定了高伽马(HG)波段对运动预测的关键作用,显示了不同手指运动所涉及的特定皮层区域。这些发现强调了高伽马波段在运动控制中的生理意义:与现有方法的比较:3D-CNN 模型通过有效捕捉心电图数据中的空间和时间模式,表现优于传统的机器学习方法。不同于标准深度学习模型的 "黑箱 "性质,xAI 技术的使用为模型的决策过程提供了更清晰的洞察力:结论:所提出的 3D-CNN 模型与 xAI 方法相结合,提高了从心电图数据中解码手指运动的准确性。这种方法为脑机接口(BCI)应用提供了更高效、更可解释的解决方案,强调了 HG 波段在运动控制中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding micro-electrocorticographic signals by using explainable 3D convolutional neural network to predict finger movements

Background

Electroencephalography (EEG) and electrocorticography (ECoG) recordings have been used to decode finger movements by analyzing brain activity. Traditional methods focused on single bandpass power changes for movement decoding, utilizing machine learning models requiring manual feature extraction.

New method

This study introduces a 3D convolutional neural network (3D-CNN) model to decode finger movements using ECoG data. The model employs adaptive, explainable AI (xAI) techniques to interpret the physiological relevance of brain signals. ECoG signals from epilepsy patients during awake craniotomy were processed to extract power spectral density across multiple frequency bands. These data formed a 3D matrix used to train the 3D-CNN to predict finger trajectories.

Results

The 3D-CNN model showed significant accuracy in predicting finger movements, with root-mean-square error (RMSE) values of 0.26–0.38 for single finger movements and 0.20–0.24 for combined movements. Explainable AI techniques, Grad-CAM and SHAP, identified the high gamma (HG) band as crucial for movement prediction, showing specific cortical regions involved in different finger movements. These findings highlighted the physiological significance of the HG band in motor control.

Comparison with existing methods

The 3D-CNN model outperformed traditional machine learning approaches by effectively capturing spatial and temporal patterns in ECoG data. The use of xAI techniques provided clearer insights into the model's decision-making process, unlike the "black box" nature of standard deep learning models.

Conclusions

The proposed 3D-CNN model, combined with xAI methods, enhances the decoding accuracy of finger movements from ECoG data. This approach offers a more efficient and interpretable solution for brain-computer interface (BCI) applications, emphasizing the HG band's role in motor control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信