Yangyue Feng, Xiaokang Yang, Yong Li, Lijuan Zhang, Yan Lv, Jinfang Jin
{"title":"TSKPD: 点云中的孪生结构关键点检测","authors":"Yangyue Feng, Xiaokang Yang, Yong Li, Lijuan Zhang, Yan Lv, Jinfang Jin","doi":"10.1007/s40747-024-01593-y","DOIUrl":null,"url":null,"abstract":"<p>The point cloud keypoint detection algorithm like USIP that uses downsampling first and then fine-tuning the sampling points cannot effectively detect the defect part of the single view defect point cloud, resulting in the inability to output the keypoints of the defect part. Therefore, this paper proposes the twin structure key point detection algorithm named TSKPD based on the idea of contrastive learning, which uses two single-view defect point clouds to synthesize relatively more complete key points for learning, so as to promote the network model to learn the features of the complete point cloud. The robustness of key point detection of point cloud is effectively improved, and the detection of single view defect point cloud is realized. The test results on ModelNet40 and ShapeNet datasets show that the coverage rate of TSKPD on the missing part of the single view defect point cloud is 12.62 higher than the existing optimal algorithm.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"6 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TSKPD: twin structure key point detection in point cloud\",\"authors\":\"Yangyue Feng, Xiaokang Yang, Yong Li, Lijuan Zhang, Yan Lv, Jinfang Jin\",\"doi\":\"10.1007/s40747-024-01593-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The point cloud keypoint detection algorithm like USIP that uses downsampling first and then fine-tuning the sampling points cannot effectively detect the defect part of the single view defect point cloud, resulting in the inability to output the keypoints of the defect part. Therefore, this paper proposes the twin structure key point detection algorithm named TSKPD based on the idea of contrastive learning, which uses two single-view defect point clouds to synthesize relatively more complete key points for learning, so as to promote the network model to learn the features of the complete point cloud. The robustness of key point detection of point cloud is effectively improved, and the detection of single view defect point cloud is realized. The test results on ModelNet40 and ShapeNet datasets show that the coverage rate of TSKPD on the missing part of the single view defect point cloud is 12.62 higher than the existing optimal algorithm.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01593-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01593-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
TSKPD: twin structure key point detection in point cloud
The point cloud keypoint detection algorithm like USIP that uses downsampling first and then fine-tuning the sampling points cannot effectively detect the defect part of the single view defect point cloud, resulting in the inability to output the keypoints of the defect part. Therefore, this paper proposes the twin structure key point detection algorithm named TSKPD based on the idea of contrastive learning, which uses two single-view defect point clouds to synthesize relatively more complete key points for learning, so as to promote the network model to learn the features of the complete point cloud. The robustness of key point detection of point cloud is effectively improved, and the detection of single view defect point cloud is realized. The test results on ModelNet40 and ShapeNet datasets show that the coverage rate of TSKPD on the missing part of the single view defect point cloud is 12.62 higher than the existing optimal algorithm.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.