实现粮食系统的公平

IF 4 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Helen Onyeaka, Keru Duan, Taghi Miri, Gu Pang, Eric Shiu, Irina Pokhilenko, Özlem Ögtem-Young, Liza Jabbour, Kathryn Miles, Amil Khan, Christine H. Foyer, Emma Frew, Lin Fu, Bisola Osifowora
{"title":"实现粮食系统的公平","authors":"Helen Onyeaka,&nbsp;Keru Duan,&nbsp;Taghi Miri,&nbsp;Gu Pang,&nbsp;Eric Shiu,&nbsp;Irina Pokhilenko,&nbsp;Özlem Ögtem-Young,&nbsp;Liza Jabbour,&nbsp;Kathryn Miles,&nbsp;Amil Khan,&nbsp;Christine H. Foyer,&nbsp;Emma Frew,&nbsp;Lin Fu,&nbsp;Bisola Osifowora","doi":"10.1002/fes3.572","DOIUrl":null,"url":null,"abstract":"<p>The challenge of feeding an additional 2 billion people by 2050 is one of the most pressing issues of our generation. The required changes in the current food system must be achieved while reducing the negative environmental impacts of current farming practices on our climate and biodiversity and avoiding deforestation. This formidable challenge must be overcome in a projected climate that is more variable and where extreme weather events are increasingly common. While the green revolution, agricultural land expansion and agrotechnological innovations have significantly increased crop productivity over the last 50 years, the gains in the yields of most major crops have reached a plateau. Moreover, global hunger remains at a record high. Climate change-associated changes in weather patterns have decreased the yields of major crops. Further land expansion is impossible without severe trade-offs with biodiversity and climate change mitigation. Wars and pandemics are currently severely disrupting the global agri-food system, increasing prices and exacerbating food insecurity, with the world's poorest suffering the most. The climate change–social instability nexus will continue to cause additional stress to the agri-food system. Here, we consider the inequities in the current food system, highlighting the weak interconnection among research, policy and societal action that is hindering mitigation and adaptation efforts. We argue that improved interconnections among research, policy, governance and societal action will unlock the potential to achieve food security while supporting climate change mitigation targets. Our analysis includes specific strategies such as strengthening small-scale farmers, promoting fair trade practices and reducing food waste to achieve these goals.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.572","citationCount":"0","resultStr":"{\"title\":\"Achieving fairness in the food system\",\"authors\":\"Helen Onyeaka,&nbsp;Keru Duan,&nbsp;Taghi Miri,&nbsp;Gu Pang,&nbsp;Eric Shiu,&nbsp;Irina Pokhilenko,&nbsp;Özlem Ögtem-Young,&nbsp;Liza Jabbour,&nbsp;Kathryn Miles,&nbsp;Amil Khan,&nbsp;Christine H. Foyer,&nbsp;Emma Frew,&nbsp;Lin Fu,&nbsp;Bisola Osifowora\",\"doi\":\"10.1002/fes3.572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The challenge of feeding an additional 2 billion people by 2050 is one of the most pressing issues of our generation. The required changes in the current food system must be achieved while reducing the negative environmental impacts of current farming practices on our climate and biodiversity and avoiding deforestation. This formidable challenge must be overcome in a projected climate that is more variable and where extreme weather events are increasingly common. While the green revolution, agricultural land expansion and agrotechnological innovations have significantly increased crop productivity over the last 50 years, the gains in the yields of most major crops have reached a plateau. Moreover, global hunger remains at a record high. Climate change-associated changes in weather patterns have decreased the yields of major crops. Further land expansion is impossible without severe trade-offs with biodiversity and climate change mitigation. Wars and pandemics are currently severely disrupting the global agri-food system, increasing prices and exacerbating food insecurity, with the world's poorest suffering the most. The climate change–social instability nexus will continue to cause additional stress to the agri-food system. Here, we consider the inequities in the current food system, highlighting the weak interconnection among research, policy and societal action that is hindering mitigation and adaptation efforts. We argue that improved interconnections among research, policy, governance and societal action will unlock the potential to achieve food security while supporting climate change mitigation targets. Our analysis includes specific strategies such as strengthening small-scale farmers, promoting fair trade practices and reducing food waste to achieve these goals.</p>\",\"PeriodicalId\":54283,\"journal\":{\"name\":\"Food and Energy Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.572\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Energy Security\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fes3.572\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.572","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

到 2050 年再为 20 亿人提供粮食是我们这一代人面临的最紧迫问题之一。必须对当前的粮食系统进行必要的改革,同时减少当前耕作方式对气候和生物多样性造成的负面环境影响,避免砍伐森林。这一艰巨的挑战必须在预测的气候更加多变、极端天气事件日益频繁的情况下加以克服。在过去 50 年里,绿色革命、农业用地扩张和农业技术创新显著提高了作物生产率,但大多数主要作物的增产已达到了顶峰。此外,全球饥饿人口仍处于历史最高水平。与气候变化相关的天气模式变化降低了主要作物的产量。如果不在生物多样性和减缓气候变化方面做出严重权衡,就不可能进一步扩大土地面积。目前,战争和大流行病严重扰乱了全球农业食品体系,抬高了价格,加剧了粮食不安全,世界上最贫穷的人受害最深。气候变化与社会不稳定之间的关系将继续给农业粮食系统造成更大压力。在此,我们探讨了当前粮食系统中存在的不公平现象,强调了研究、政策和社会行动之间薄弱的相互联系,这种联系阻碍了减缓和适应气候变化的努力。我们认为,改善研究、政策、治理和社会行动之间的相互联系,将释放实现粮食安全的潜力,同时支持减缓气候变化的目标。我们的分析包括实现这些目标的具体战略,如加强小规模农户、促进公平贸易实践和减少粮食浪费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achieving fairness in the food system

Achieving fairness in the food system

The challenge of feeding an additional 2 billion people by 2050 is one of the most pressing issues of our generation. The required changes in the current food system must be achieved while reducing the negative environmental impacts of current farming practices on our climate and biodiversity and avoiding deforestation. This formidable challenge must be overcome in a projected climate that is more variable and where extreme weather events are increasingly common. While the green revolution, agricultural land expansion and agrotechnological innovations have significantly increased crop productivity over the last 50 years, the gains in the yields of most major crops have reached a plateau. Moreover, global hunger remains at a record high. Climate change-associated changes in weather patterns have decreased the yields of major crops. Further land expansion is impossible without severe trade-offs with biodiversity and climate change mitigation. Wars and pandemics are currently severely disrupting the global agri-food system, increasing prices and exacerbating food insecurity, with the world's poorest suffering the most. The climate change–social instability nexus will continue to cause additional stress to the agri-food system. Here, we consider the inequities in the current food system, highlighting the weak interconnection among research, policy and societal action that is hindering mitigation and adaptation efforts. We argue that improved interconnections among research, policy, governance and societal action will unlock the potential to achieve food security while supporting climate change mitigation targets. Our analysis includes specific strategies such as strengthening small-scale farmers, promoting fair trade practices and reducing food waste to achieve these goals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food and Energy Security
Food and Energy Security Energy-Renewable Energy, Sustainability and the Environment
CiteScore
9.30
自引率
4.00%
发文量
76
审稿时长
19 weeks
期刊介绍: Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor. Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights. Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge. Examples of areas covered in Food and Energy Security include: • Agronomy • Biotechnological Approaches • Breeding & Genetics • Climate Change • Quality and Composition • Food Crops and Bioenergy Feedstocks • Developmental, Physiology and Biochemistry • Functional Genomics • Molecular Biology • Pest and Disease Management • Post Harvest Biology • Soil Science • Systems Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信