Peter Danchev , Esther García , Miguel Gómez Lozano
{"title":"关于规定特征多项式","authors":"Peter Danchev , Esther García , Miguel Gómez Lozano","doi":"10.1016/j.laa.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be a field. We show that given any <em>n</em>th degree monic polynomial <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>F</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> and any matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> whose trace coincides with the trace of <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and consisting in its main diagonal of <em>k</em> 0-blocks of order one, with <span><math><mi>k</mi><mo><</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span>, and an invertible non-derogatory block of order <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span>, we can construct a square-zero matrix <em>N</em> such that the characteristic polynomial of <span><math><mi>A</mi><mo>+</mo><mi>N</mi></math></span> is exactly <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. We also show that the restriction <span><math><mi>k</mi><mo><</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> is necessary in the sense that, when the equality <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> holds, not every characteristic polynomial having the same trace as <em>A</em> can be obtained by adding a square-zero matrix. Finally, we apply our main result to decompose matrices into the sum of a square-zero matrix and some other matrix which is either diagonalizable, invertible, potent or torsion.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 1-18"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003318/pdfft?md5=667be3a9d9b553d45f982a25bb94c2e9&pid=1-s2.0-S0024379524003318-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On prescribed characteristic polynomials\",\"authors\":\"Peter Danchev , Esther García , Miguel Gómez Lozano\",\"doi\":\"10.1016/j.laa.2024.08.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>F</mi></math></span> be a field. We show that given any <em>n</em>th degree monic polynomial <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>F</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> and any matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> whose trace coincides with the trace of <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and consisting in its main diagonal of <em>k</em> 0-blocks of order one, with <span><math><mi>k</mi><mo><</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span>, and an invertible non-derogatory block of order <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span>, we can construct a square-zero matrix <em>N</em> such that the characteristic polynomial of <span><math><mi>A</mi><mo>+</mo><mi>N</mi></math></span> is exactly <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. We also show that the restriction <span><math><mi>k</mi><mo><</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> is necessary in the sense that, when the equality <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> holds, not every characteristic polynomial having the same trace as <em>A</em> can be obtained by adding a square-zero matrix. Finally, we apply our main result to decompose matrices into the sum of a square-zero matrix and some other matrix which is either diagonalizable, invertible, potent or torsion.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"702 \",\"pages\":\"Pages 1-18\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003318/pdfft?md5=667be3a9d9b553d45f982a25bb94c2e9&pid=1-s2.0-S0024379524003318-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003318\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003318","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 F 是一个域。我们证明,给定任何 n 阶单项式 q(x)∈F[x],以及任何矩阵 A∈Mn(F)(其迹与 q(x)的迹重合,且在其主对角线上由 k 个阶为 1 的 0 块(k<n-k)和一个阶为 n-k 的可逆非derogatory 块组成),我们可以构造一个平方为零的矩阵 N,使得 A+N 的特征多项式正是 q(x)。我们还证明,限制 k<n-k 是必要的,因为当等式 k=n-k 成立时,并非每个与 A 具有相同迹的特征多项式都能通过添加一个平方为零的矩阵得到。最后,我们应用主要结果将矩阵分解为一个平方为零的矩阵与其他矩阵之和,这些矩阵要么是可对角的,要么是可逆的,要么是有势的,要么是扭转的。
Let be a field. We show that given any nth degree monic polynomial and any matrix whose trace coincides with the trace of and consisting in its main diagonal of k 0-blocks of order one, with , and an invertible non-derogatory block of order , we can construct a square-zero matrix N such that the characteristic polynomial of is exactly . We also show that the restriction is necessary in the sense that, when the equality holds, not every characteristic polynomial having the same trace as A can be obtained by adding a square-zero matrix. Finally, we apply our main result to decompose matrices into the sum of a square-zero matrix and some other matrix which is either diagonalizable, invertible, potent or torsion.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.