关于规定特征多项式

IF 1 3区 数学 Q1 MATHEMATICS
Peter Danchev , Esther García , Miguel Gómez Lozano
{"title":"关于规定特征多项式","authors":"Peter Danchev ,&nbsp;Esther García ,&nbsp;Miguel Gómez Lozano","doi":"10.1016/j.laa.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be a field. We show that given any <em>n</em>th degree monic polynomial <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>F</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> and any matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> whose trace coincides with the trace of <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and consisting in its main diagonal of <em>k</em> 0-blocks of order one, with <span><math><mi>k</mi><mo>&lt;</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span>, and an invertible non-derogatory block of order <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span>, we can construct a square-zero matrix <em>N</em> such that the characteristic polynomial of <span><math><mi>A</mi><mo>+</mo><mi>N</mi></math></span> is exactly <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. We also show that the restriction <span><math><mi>k</mi><mo>&lt;</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> is necessary in the sense that, when the equality <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> holds, not every characteristic polynomial having the same trace as <em>A</em> can be obtained by adding a square-zero matrix. Finally, we apply our main result to decompose matrices into the sum of a square-zero matrix and some other matrix which is either diagonalizable, invertible, potent or torsion.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 1-18"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003318/pdfft?md5=667be3a9d9b553d45f982a25bb94c2e9&pid=1-s2.0-S0024379524003318-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On prescribed characteristic polynomials\",\"authors\":\"Peter Danchev ,&nbsp;Esther García ,&nbsp;Miguel Gómez Lozano\",\"doi\":\"10.1016/j.laa.2024.08.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>F</mi></math></span> be a field. We show that given any <em>n</em>th degree monic polynomial <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>F</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> and any matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> whose trace coincides with the trace of <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and consisting in its main diagonal of <em>k</em> 0-blocks of order one, with <span><math><mi>k</mi><mo>&lt;</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span>, and an invertible non-derogatory block of order <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span>, we can construct a square-zero matrix <em>N</em> such that the characteristic polynomial of <span><math><mi>A</mi><mo>+</mo><mi>N</mi></math></span> is exactly <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. We also show that the restriction <span><math><mi>k</mi><mo>&lt;</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> is necessary in the sense that, when the equality <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> holds, not every characteristic polynomial having the same trace as <em>A</em> can be obtained by adding a square-zero matrix. Finally, we apply our main result to decompose matrices into the sum of a square-zero matrix and some other matrix which is either diagonalizable, invertible, potent or torsion.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"702 \",\"pages\":\"Pages 1-18\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003318/pdfft?md5=667be3a9d9b553d45f982a25bb94c2e9&pid=1-s2.0-S0024379524003318-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003318\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003318","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 F 是一个域。我们证明,给定任何 n 阶单项式 q(x)∈F[x],以及任何矩阵 A∈Mn(F)(其迹与 q(x)的迹重合,且在其主对角线上由 k 个阶为 1 的 0 块(k<n-k)和一个阶为 n-k 的可逆非derogatory 块组成),我们可以构造一个平方为零的矩阵 N,使得 A+N 的特征多项式正是 q(x)。我们还证明,限制 k<n-k 是必要的,因为当等式 k=n-k 成立时,并非每个与 A 具有相同迹的特征多项式都能通过添加一个平方为零的矩阵得到。最后,我们应用主要结果将矩阵分解为一个平方为零的矩阵与其他矩阵之和,这些矩阵要么是可对角的,要么是可逆的,要么是有势的,要么是扭转的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On prescribed characteristic polynomials

Let F be a field. We show that given any nth degree monic polynomial q(x)F[x] and any matrix AMn(F) whose trace coincides with the trace of q(x) and consisting in its main diagonal of k 0-blocks of order one, with k<nk, and an invertible non-derogatory block of order nk, we can construct a square-zero matrix N such that the characteristic polynomial of A+N is exactly q(x). We also show that the restriction k<nk is necessary in the sense that, when the equality k=nk holds, not every characteristic polynomial having the same trace as A can be obtained by adding a square-zero matrix. Finally, we apply our main result to decompose matrices into the sum of a square-zero matrix and some other matrix which is either diagonalizable, invertible, potent or torsion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信