完美整数 k 匹配、k 因子临界和图的谱半径

IF 1 3区 数学 Q1 MATHEMATICS
Quanbao Zhang , Dandan Fan
{"title":"完美整数 k 匹配、k 因子临界和图的谱半径","authors":"Quanbao Zhang ,&nbsp;Dandan Fan","doi":"10.1016/j.laa.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <em>G</em> is <em>k</em>-factor-critical if <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span> has a perfect matching for any subset <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi></math></span>. An integer <em>k</em>-matching of <em>G</em> is a function <span><math><mi>h</mi><mo>:</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> satisfying <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>Γ</mi><mo>(</mo><mi>v</mi><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>≤</mo><mi>k</mi></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>Γ</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> is the set of edges incident with <em>v</em>. An integer <em>k</em>-matching <em>h</em> of <em>G</em> is called perfect if <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>/</mo><mn>2</mn></math></span>. A graph <em>G</em> has the strong parity property if for every subset <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with even size, <em>G</em> has a spanning subgraph <em>F</em> with minimum degree at least one such that <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>S</mi></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></math></span> for all <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>﹨</mo><mi>S</mi></math></span>. In this paper, we provide edge number and spectral conditions for the <em>k</em>-factor-criticality, perfect integer <em>k</em>-matching and strong parity property of a graph, respectively.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perfect integer k-matching, k-factor-critical, and the spectral radius of graphs\",\"authors\":\"Quanbao Zhang ,&nbsp;Dandan Fan\",\"doi\":\"10.1016/j.laa.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph <em>G</em> is <em>k</em>-factor-critical if <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span> has a perfect matching for any subset <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi></math></span>. An integer <em>k</em>-matching of <em>G</em> is a function <span><math><mi>h</mi><mo>:</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> satisfying <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>Γ</mi><mo>(</mo><mi>v</mi><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>≤</mo><mi>k</mi></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>Γ</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> is the set of edges incident with <em>v</em>. An integer <em>k</em>-matching <em>h</em> of <em>G</em> is called perfect if <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>/</mo><mn>2</mn></math></span>. A graph <em>G</em> has the strong parity property if for every subset <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with even size, <em>G</em> has a spanning subgraph <em>F</em> with minimum degree at least one such that <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>S</mi></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></math></span> for all <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>﹨</mo><mi>S</mi></math></span>. In this paper, we provide edge number and spectral conditions for the <em>k</em>-factor-criticality, perfect integer <em>k</em>-matching and strong parity property of a graph, respectively.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003252\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003252","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果对于 V(G) 的任意子集 S,|S|=k,G-S 有一个完美匹配,则图 G 是 k 因子临界图。如果∑e∈E(G)h(e)=k|V(G)|/2,则称 G 的整数 k 匹配为完美匹配。如果对于 V(G) 的每一个偶数大小的子集 S,G 都有一个最小度至少为 1 的跨子图 F,且对于所有 v∈S 的 dF(v)≡1(mod2)和对于所有 u∈V(G)﹨S 的 dF(u)≡0(mod2),则图 G 具有强奇偶性属性。本文分别为图的 k 因子临界、完美整数 k 匹配和强奇偶性属性提供了边数和谱条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perfect integer k-matching, k-factor-critical, and the spectral radius of graphs

A graph G is k-factor-critical if GS has a perfect matching for any subset S of V(G) with |S|=k. An integer k-matching of G is a function h:E(G){0,1,,k} satisfying eΓ(v)h(e)k for all vV(G), where Γ(v) is the set of edges incident with v. An integer k-matching h of G is called perfect if eE(G)h(e)=k|V(G)|/2. A graph G has the strong parity property if for every subset S of V(G) with even size, G has a spanning subgraph F with minimum degree at least one such that dF(v)1(mod2) for all vS and dF(u)0(mod2) for all uV(G)S. In this paper, we provide edge number and spectral conditions for the k-factor-criticality, perfect integer k-matching and strong parity property of a graph, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信