Wesley Quaresma Cota , Antonio Ioppolo , Fabrizio Martino , Ana Cristina Vieira
{"title":"论 G 级代数的长度序列","authors":"Wesley Quaresma Cota , Antonio Ioppolo , Fabrizio Martino , Ana Cristina Vieira","doi":"10.1016/j.laa.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>F</em> be a field of characteristic zero and let <em>A</em> be an <em>F</em>-algebra graded by a finite group <em>G</em> of order <em>k</em>. Given a non-negative integer <em>n</em> and a sum <span><math><mi>n</mi><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of <em>k</em> non-negative integers, we associate a <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub></math></span>-module to <em>A</em>, where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub></math></span>, and we denote its <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub></math></span>-character by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In this paper, for all sum <span><math><mi>n</mi><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, we make explicit the decomposition of <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for some important <em>G</em>-graded algebras <em>A</em> and we compute the number <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> of irreducibles appearing in all such decompositions. Our main goal is to classify <em>G</em>-graded algebras <em>A</em> such that the sequence <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is bounded by three.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"701 ","pages":"Pages 61-96"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the colength sequence of G-graded algebras\",\"authors\":\"Wesley Quaresma Cota , Antonio Ioppolo , Fabrizio Martino , Ana Cristina Vieira\",\"doi\":\"10.1016/j.laa.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>F</em> be a field of characteristic zero and let <em>A</em> be an <em>F</em>-algebra graded by a finite group <em>G</em> of order <em>k</em>. Given a non-negative integer <em>n</em> and a sum <span><math><mi>n</mi><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of <em>k</em> non-negative integers, we associate a <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub></math></span>-module to <em>A</em>, where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub></math></span>, and we denote its <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub></math></span>-character by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In this paper, for all sum <span><math><mi>n</mi><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, we make explicit the decomposition of <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for some important <em>G</em>-graded algebras <em>A</em> and we compute the number <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> of irreducibles appearing in all such decompositions. Our main goal is to classify <em>G</em>-graded algebras <em>A</em> such that the sequence <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is bounded by three.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"701 \",\"pages\":\"Pages 61-96\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003264\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003264","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 F 是特征为零的域,设 A 是由阶数为 k 的有限群 G 分级的 F 代数。给定一个非负整数 n 和 k 个非负整数的和 n=n1+⋯+nk,我们给 A 关联一个 S〈n〉模,其中 S〈n〉:=Sn1×⋯×Snk,我们用 χ〈n〉-character 表示其 S〈n〉-character。在本文中,对于所有和 n=n1+⋯+nk,我们为一些重要的 G 级代数方程 A 明确了 χ〈n〉(A)的分解,并计算了在所有这些分解中出现的不可约数 lnG(A)。我们的主要目标是对 G 级元组 A 进行分类,使序列 lnG(A) 以三个为界。
Let F be a field of characteristic zero and let A be an F-algebra graded by a finite group G of order k. Given a non-negative integer n and a sum of k non-negative integers, we associate a -module to A, where , and we denote its -character by . In this paper, for all sum , we make explicit the decomposition of for some important G-graded algebras A and we compute the number of irreducibles appearing in all such decompositions. Our main goal is to classify G-graded algebras A such that the sequence is bounded by three.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.