8-(重氮甲基)喹啉衍生化酰基-CoA 硅质谱库揭示了老化小鼠器官中酰基-CoA 的分布情况

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Jinhui Yu, Menghao Guo, Ye Liu, Sha Li, Jian Ni, Yu-Qi Feng, Jun Ding
{"title":"8-(重氮甲基)喹啉衍生化酰基-CoA 硅质谱库揭示了老化小鼠器官中酰基-CoA 的分布情况","authors":"Jinhui Yu, Menghao Guo, Ye Liu, Sha Li, Jian Ni, Yu-Qi Feng, Jun Ding","doi":"10.1021/acs.analchem.4c02113","DOIUrl":null,"url":null,"abstract":"Acyl-Coenzyme As (acyl-CoAs) are essential intermediates to incorporate carboxylic acids into the bioactive metabolic network across all species, which play important roles in lipid remodeling, fatty acids, and xenobiotic carboxylic metabolism. However, due to the poor liquid chromatographic behavior, the relatively low mass spectrometry (MS) sensitivity, and lack of authentic standards for annotation, the in-depth untargeted profiling of acyl-CoAs is challenging. We developed a chemical derivatization strategy of acyl-CoAs by employing 8-(diazomethyl) quinoline (8-DMQ) as the labeling reagent, which increased the detection sensitivity by 625-fold with good peak shapes. By applying the MS/MS fragmentation rules learned from the MS/MS spectra of 8-DMQ-acyl-CoA authentic standards, an 8-DMQ-acyl-CoA in silico mass spectral library containing 33,344 high-resolution tandem mass spectra of 8,336 acyl-CoA species was created. The in silico library facilitated the high-throughput and automatic annotation of acyl-CoA using multiple metabolomic data processing tools, such as NIST MS Search and MSDIAL. The feasibility of the in silico library in a complex sample was demonstrated by profiling endogenous acyl-CoAs in multiple organs of an aging mouse. 53 acyl-CoA species were annotated, including 12 oxidized fatty acyl-CoAs and 3 novel nonfatty acyl-CoAs. False positive annotations were further screened by developing an eXtreme Gradient Boosting (XGBoost) based retention time prediction model. The organ distribution and the aging dynamics of acyl-CoAs in a mouse model were discussed for the first time, which helped to elucidate the organ-specific function of acyl-CoAs and the role of different acyl-CoA species during aging.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"143 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An 8-(Diazomethyl) Quinoline Derivatized Acyl-CoA in Silico Mass Spectral Library Reveals the Landscape of Acyl-CoA in Aging Mouse Organs\",\"authors\":\"Jinhui Yu, Menghao Guo, Ye Liu, Sha Li, Jian Ni, Yu-Qi Feng, Jun Ding\",\"doi\":\"10.1021/acs.analchem.4c02113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acyl-Coenzyme As (acyl-CoAs) are essential intermediates to incorporate carboxylic acids into the bioactive metabolic network across all species, which play important roles in lipid remodeling, fatty acids, and xenobiotic carboxylic metabolism. However, due to the poor liquid chromatographic behavior, the relatively low mass spectrometry (MS) sensitivity, and lack of authentic standards for annotation, the in-depth untargeted profiling of acyl-CoAs is challenging. We developed a chemical derivatization strategy of acyl-CoAs by employing 8-(diazomethyl) quinoline (8-DMQ) as the labeling reagent, which increased the detection sensitivity by 625-fold with good peak shapes. By applying the MS/MS fragmentation rules learned from the MS/MS spectra of 8-DMQ-acyl-CoA authentic standards, an 8-DMQ-acyl-CoA in silico mass spectral library containing 33,344 high-resolution tandem mass spectra of 8,336 acyl-CoA species was created. The in silico library facilitated the high-throughput and automatic annotation of acyl-CoA using multiple metabolomic data processing tools, such as NIST MS Search and MSDIAL. The feasibility of the in silico library in a complex sample was demonstrated by profiling endogenous acyl-CoAs in multiple organs of an aging mouse. 53 acyl-CoA species were annotated, including 12 oxidized fatty acyl-CoAs and 3 novel nonfatty acyl-CoAs. False positive annotations were further screened by developing an eXtreme Gradient Boosting (XGBoost) based retention time prediction model. The organ distribution and the aging dynamics of acyl-CoAs in a mouse model were discussed for the first time, which helped to elucidate the organ-specific function of acyl-CoAs and the role of different acyl-CoA species during aging.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c02113\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c02113","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

酰基辅酶As(acyl-CoAs)是所有物种将羧酸纳入生物活性代谢网络的重要中间体,在脂质重塑、脂肪酸和异生物羧基代谢中发挥着重要作用。然而,由于液相色谱性能差、质谱(MS)灵敏度相对较低以及缺乏用于注释的真实标准,对酰基-CoAs 进行深入的非靶向分析具有挑战性。我们采用 8-(重氮甲基)喹啉(8-DMQ)作为标记试剂,开发了一种酰基-CoAs 化学衍生化策略,将检测灵敏度提高了 625 倍,且峰形良好。通过应用从 8-DMQ-acyl-CoA 真品标准品的 MS/MS 图谱中学到的 MS/MS 碎片规则,创建了一个 8-DMQ-acyl-CoA 硅质谱库,其中包含 8,336 种酰基-CoA 的 33,344 个高分辨率串联质谱图。通过使用多种代谢组学数据处理工具(如 NIST MS Search 和 MSDIAL),该硅学质谱库有助于对酰基-CoA 进行高通量自动注释。通过分析衰老小鼠多个器官中的内源性酰基-CoA,证明了硅库在复杂样本中的可行性。共注释了 53 种酰基-CoA,包括 12 种氧化脂肪酰基-CoA 和 3 种新型非脂肪酰基-CoA。通过开发基于梯度提升(XGBoost)的保留时间预测模型,进一步筛选了假阳性注释。该研究首次讨论了酰基-CoAs在小鼠模型中的器官分布和衰老动态,有助于阐明酰基-CoAs的器官特异性功能以及不同酰基-CoAs物种在衰老过程中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An 8-(Diazomethyl) Quinoline Derivatized Acyl-CoA in Silico Mass Spectral Library Reveals the Landscape of Acyl-CoA in Aging Mouse Organs

An 8-(Diazomethyl) Quinoline Derivatized Acyl-CoA in Silico Mass Spectral Library Reveals the Landscape of Acyl-CoA in Aging Mouse Organs
Acyl-Coenzyme As (acyl-CoAs) are essential intermediates to incorporate carboxylic acids into the bioactive metabolic network across all species, which play important roles in lipid remodeling, fatty acids, and xenobiotic carboxylic metabolism. However, due to the poor liquid chromatographic behavior, the relatively low mass spectrometry (MS) sensitivity, and lack of authentic standards for annotation, the in-depth untargeted profiling of acyl-CoAs is challenging. We developed a chemical derivatization strategy of acyl-CoAs by employing 8-(diazomethyl) quinoline (8-DMQ) as the labeling reagent, which increased the detection sensitivity by 625-fold with good peak shapes. By applying the MS/MS fragmentation rules learned from the MS/MS spectra of 8-DMQ-acyl-CoA authentic standards, an 8-DMQ-acyl-CoA in silico mass spectral library containing 33,344 high-resolution tandem mass spectra of 8,336 acyl-CoA species was created. The in silico library facilitated the high-throughput and automatic annotation of acyl-CoA using multiple metabolomic data processing tools, such as NIST MS Search and MSDIAL. The feasibility of the in silico library in a complex sample was demonstrated by profiling endogenous acyl-CoAs in multiple organs of an aging mouse. 53 acyl-CoA species were annotated, including 12 oxidized fatty acyl-CoAs and 3 novel nonfatty acyl-CoAs. False positive annotations were further screened by developing an eXtreme Gradient Boosting (XGBoost) based retention time prediction model. The organ distribution and the aging dynamics of acyl-CoAs in a mouse model were discussed for the first time, which helped to elucidate the organ-specific function of acyl-CoAs and the role of different acyl-CoA species during aging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信