{"title":"FitScore:基于机器学习的三维虚拟筛选快速评分。","authors":"Daniel K. Gehlhaar, Daniel J. Mermelstein","doi":"10.1007/s10822-024-00570-4","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing virtual screening enrichment has become an urgent problem in computational chemistry, driven by increasingly large databases of commercially available compounds, without a commensurate drop in in vitro screening costs. Docking these large databases is possible with cloud-scale computing. However, rapid docking necessitates compromises in scoring, often leading to poor enrichment and an abundance of false positives in docking results. This work describes a new scoring function composed of two parts – a knowledge-based component that predicts the probability of a particular atom type being in a particular receptor environment, and a tunable weight matrix that converts the probability predictions into a dimensionless score suitable for virtual screening enrichment. This score, the FitScore, represents the compatibility between the ligand and the binding site and is capable of a high degree of enrichment across standardized docking test sets.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FitScore: a fast machine learning-based score for 3D virtual screening enrichment\",\"authors\":\"Daniel K. Gehlhaar, Daniel J. Mermelstein\",\"doi\":\"10.1007/s10822-024-00570-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enhancing virtual screening enrichment has become an urgent problem in computational chemistry, driven by increasingly large databases of commercially available compounds, without a commensurate drop in in vitro screening costs. Docking these large databases is possible with cloud-scale computing. However, rapid docking necessitates compromises in scoring, often leading to poor enrichment and an abundance of false positives in docking results. This work describes a new scoring function composed of two parts – a knowledge-based component that predicts the probability of a particular atom type being in a particular receptor environment, and a tunable weight matrix that converts the probability predictions into a dimensionless score suitable for virtual screening enrichment. This score, the FitScore, represents the compatibility between the ligand and the binding site and is capable of a high degree of enrichment across standardized docking test sets.</p></div>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-024-00570-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-024-00570-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
FitScore: a fast machine learning-based score for 3D virtual screening enrichment
Enhancing virtual screening enrichment has become an urgent problem in computational chemistry, driven by increasingly large databases of commercially available compounds, without a commensurate drop in in vitro screening costs. Docking these large databases is possible with cloud-scale computing. However, rapid docking necessitates compromises in scoring, often leading to poor enrichment and an abundance of false positives in docking results. This work describes a new scoring function composed of two parts – a knowledge-based component that predicts the probability of a particular atom type being in a particular receptor environment, and a tunable weight matrix that converts the probability predictions into a dimensionless score suitable for virtual screening enrichment. This score, the FitScore, represents the compatibility between the ligand and the binding site and is capable of a high degree of enrichment across standardized docking test sets.
期刊介绍:
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas:
- theoretical chemistry;
- computational chemistry;
- computer and molecular graphics;
- molecular modeling;
- protein engineering;
- drug design;
- expert systems;
- general structure-property relationships;
- molecular dynamics;
- chemical database development and usage.