{"title":"探索形状记忆合金的自监督概率模型","authors":"Yiding Wang, Tianqing Li, Hongxiang Zong, Xiangdong Ding, Songhua Xu, Jun Sun, Turab Lookman","doi":"10.1038/s41524-024-01379-3","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in machine learning (ML) have revolutionized the field of high-performance materials design. However, developing robust ML models to decipher intricate structure-property relationships in materials remains challenging, primarily due to the limited availability of labeled datasets with well-characterized crystal structures. This is particularly pronounced in materials where functional properties are closely intertwined with their crystallographic symmetry. We introduce a self-supervised probabilistic model (SSPM) that autonomously learns unbiased atomic representations and the likelihood of compounds with given crystal structures, utilizing solely the existing crystal structure data from materials databases. SSPM significantly enhances the performance of downstream ML models by efficient atomic representations and accurately captures the probabilistic relationships between composition and crystal structure. We showcase SSPM’s capability by discovering shape memory alloys (SMAs). Amongst the top 50 predictions, 23 have been confirmed as SMAs either experimentally or theoretically, and a previously unknown SMA candidate, MgAu, has been identified.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"25 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-supervised probabilistic models for exploring shape memory alloys\",\"authors\":\"Yiding Wang, Tianqing Li, Hongxiang Zong, Xiangdong Ding, Songhua Xu, Jun Sun, Turab Lookman\",\"doi\":\"10.1038/s41524-024-01379-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advancements in machine learning (ML) have revolutionized the field of high-performance materials design. However, developing robust ML models to decipher intricate structure-property relationships in materials remains challenging, primarily due to the limited availability of labeled datasets with well-characterized crystal structures. This is particularly pronounced in materials where functional properties are closely intertwined with their crystallographic symmetry. We introduce a self-supervised probabilistic model (SSPM) that autonomously learns unbiased atomic representations and the likelihood of compounds with given crystal structures, utilizing solely the existing crystal structure data from materials databases. SSPM significantly enhances the performance of downstream ML models by efficient atomic representations and accurately captures the probabilistic relationships between composition and crystal structure. We showcase SSPM’s capability by discovering shape memory alloys (SMAs). Amongst the top 50 predictions, 23 have been confirmed as SMAs either experimentally or theoretically, and a previously unknown SMA candidate, MgAu, has been identified.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01379-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01379-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
机器学习(ML)的最新进展彻底改变了高性能材料设计领域。然而,开发稳健的 ML 模型来解读材料中错综复杂的结构-性能关系仍然具有挑战性,这主要是由于具有表征良好晶体结构的标记数据集的可用性有限。这在功能特性与其晶体对称性密切相关的材料中尤为明显。我们介绍了一种自监督概率模型(SSPM),该模型仅利用材料数据库中现有的晶体结构数据,自主学习无偏的原子表征和具有给定晶体结构的化合物的可能性。SSPM 通过高效的原子表征和准确捕捉成分与晶体结构之间的概率关系,大大提高了下游 ML 模型的性能。我们通过发现形状记忆合金(SMA)展示了 SSPM 的能力。在排名前 50 位的预测中,有 23 项已通过实验或理论证实为 SMA,而且还发现了一种以前未知的 SMA 候选物质--MgAu。
Self-supervised probabilistic models for exploring shape memory alloys
Recent advancements in machine learning (ML) have revolutionized the field of high-performance materials design. However, developing robust ML models to decipher intricate structure-property relationships in materials remains challenging, primarily due to the limited availability of labeled datasets with well-characterized crystal structures. This is particularly pronounced in materials where functional properties are closely intertwined with their crystallographic symmetry. We introduce a self-supervised probabilistic model (SSPM) that autonomously learns unbiased atomic representations and the likelihood of compounds with given crystal structures, utilizing solely the existing crystal structure data from materials databases. SSPM significantly enhances the performance of downstream ML models by efficient atomic representations and accurately captures the probabilistic relationships between composition and crystal structure. We showcase SSPM’s capability by discovering shape memory alloys (SMAs). Amongst the top 50 predictions, 23 have been confirmed as SMAs either experimentally or theoretically, and a previously unknown SMA candidate, MgAu, has been identified.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.