Michael R. Duggan, Zhongsheng Peng, Pyry N. Sipilä, Joni V. Lindbohm, Jingsha Chen, Yifei Lu, Christos Davatzikos, Guray Erus, Timothy J. Hohman, Shea J. Andrews, Julián Candia, Toshiko Tanaka, Cassandra M. Joynes, Chelsea X. Alvarado, Mike A. Nalls, Jenifer Cordon, Gulzar N. Daya, Yang An, Alexandria Lewis, Abhay Moghekar, Priya Palta, Josef Coresh, Luigi Ferrucci, Mika Kivimäki, Keenan A. Walker
{"title":"蛋白质组学确定了感染后脑萎缩和认知能力下降的潜在免疫驱动因素。","authors":"Michael R. Duggan, Zhongsheng Peng, Pyry N. Sipilä, Joni V. Lindbohm, Jingsha Chen, Yifei Lu, Christos Davatzikos, Guray Erus, Timothy J. Hohman, Shea J. Andrews, Julián Candia, Toshiko Tanaka, Cassandra M. Joynes, Chelsea X. Alvarado, Mike A. Nalls, Jenifer Cordon, Gulzar N. Daya, Yang An, Alexandria Lewis, Abhay Moghekar, Priya Palta, Josef Coresh, Luigi Ferrucci, Mika Kivimäki, Keenan A. Walker","doi":"10.1038/s43587-024-00682-4","DOIUrl":null,"url":null,"abstract":"Infections have been associated with the incidence of Alzheimer disease and related dementias, but the mechanisms responsible for these associations remain unclear. Using a multicohort approach, we found that influenza, viral, respiratory, and skin and subcutaneous infections were associated with increased long-term dementia risk. These infections were also associated with region-specific brain volume loss, most commonly in the temporal lobe. We identified 260 out of 942 immunologically relevant proteins in plasma that were differentially expressed in individuals with an infection history. Of the infection-related proteins, 35 predicted volumetric changes in brain regions vulnerable to infection-specific atrophy. Several of these proteins, including PIK3CG, PACSIN2, and PRKCB, were related to cognitive decline and plasma biomarkers of dementia (Aβ42/40, GFAP, NfL, pTau-181). Genetic variants that influenced expression of immunologically relevant infection-related proteins, including ITGB6 and TLR5, predicted brain volume loss. Our findings support the role of infections in dementia risk and identify molecular mediators by which infections may contribute to neurodegeneration. This study reveals how infections that increase long-term dementia risk can contribute to longitudinal brain volume loss and regulate immunological proteins in plasma, and which of these proteins may drive infection-specific neurodegeneration.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":null,"pages":null},"PeriodicalIF":17.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43587-024-00682-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Proteomics identifies potential immunological drivers of postinfection brain atrophy and cognitive decline\",\"authors\":\"Michael R. Duggan, Zhongsheng Peng, Pyry N. Sipilä, Joni V. Lindbohm, Jingsha Chen, Yifei Lu, Christos Davatzikos, Guray Erus, Timothy J. Hohman, Shea J. Andrews, Julián Candia, Toshiko Tanaka, Cassandra M. Joynes, Chelsea X. Alvarado, Mike A. Nalls, Jenifer Cordon, Gulzar N. Daya, Yang An, Alexandria Lewis, Abhay Moghekar, Priya Palta, Josef Coresh, Luigi Ferrucci, Mika Kivimäki, Keenan A. Walker\",\"doi\":\"10.1038/s43587-024-00682-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infections have been associated with the incidence of Alzheimer disease and related dementias, but the mechanisms responsible for these associations remain unclear. Using a multicohort approach, we found that influenza, viral, respiratory, and skin and subcutaneous infections were associated with increased long-term dementia risk. These infections were also associated with region-specific brain volume loss, most commonly in the temporal lobe. We identified 260 out of 942 immunologically relevant proteins in plasma that were differentially expressed in individuals with an infection history. Of the infection-related proteins, 35 predicted volumetric changes in brain regions vulnerable to infection-specific atrophy. Several of these proteins, including PIK3CG, PACSIN2, and PRKCB, were related to cognitive decline and plasma biomarkers of dementia (Aβ42/40, GFAP, NfL, pTau-181). Genetic variants that influenced expression of immunologically relevant infection-related proteins, including ITGB6 and TLR5, predicted brain volume loss. Our findings support the role of infections in dementia risk and identify molecular mediators by which infections may contribute to neurodegeneration. This study reveals how infections that increase long-term dementia risk can contribute to longitudinal brain volume loss and regulate immunological proteins in plasma, and which of these proteins may drive infection-specific neurodegeneration.\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43587-024-00682-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43587-024-00682-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00682-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Proteomics identifies potential immunological drivers of postinfection brain atrophy and cognitive decline
Infections have been associated with the incidence of Alzheimer disease and related dementias, but the mechanisms responsible for these associations remain unclear. Using a multicohort approach, we found that influenza, viral, respiratory, and skin and subcutaneous infections were associated with increased long-term dementia risk. These infections were also associated with region-specific brain volume loss, most commonly in the temporal lobe. We identified 260 out of 942 immunologically relevant proteins in plasma that were differentially expressed in individuals with an infection history. Of the infection-related proteins, 35 predicted volumetric changes in brain regions vulnerable to infection-specific atrophy. Several of these proteins, including PIK3CG, PACSIN2, and PRKCB, were related to cognitive decline and plasma biomarkers of dementia (Aβ42/40, GFAP, NfL, pTau-181). Genetic variants that influenced expression of immunologically relevant infection-related proteins, including ITGB6 and TLR5, predicted brain volume loss. Our findings support the role of infections in dementia risk and identify molecular mediators by which infections may contribute to neurodegeneration. This study reveals how infections that increase long-term dementia risk can contribute to longitudinal brain volume loss and regulate immunological proteins in plasma, and which of these proteins may drive infection-specific neurodegeneration.