{"title":"复杂道路上无人机协同血液配送车的位置-路线优化","authors":"Zhiyi Meng, Ke Yu, Rui Qiu","doi":"10.1007/s40747-024-01591-0","DOIUrl":null,"url":null,"abstract":"<p>To address the protracted blood transportation time prevalent in contemporary urban settings, we proposed a location-routing optimization problem tailored to the distribution of blood within intricate road networks. This involved a comprehensive assessment that encompassed the judicious selection of sites for both stations and blood centers, coupled with the meticulous planning of delivery routes for unmanned aerial vehicles (UAVs) that orchestrate the transportation of blood. First, a model was formulated to minimize the overall cost, including transportation expenses, costs associated with the site, and other relevant costs related to blood transportation vehicles coordinated by UAVs. Subsequently, a two-stage hybrid heuristic algorithm was designed based on the distinctive characteristics of the problem at hand. Moreover, an enhanced k-means algorithm was employed to generate clustering schemes, utilizing the centroid method to address the challenge of location selection for delivery sites effectively. A genetic algorithm enhanced with adaptive operators was employed to address the challenging large-scale NP-hard problem associated with route planning in intricate urban road networks. The results indicated that, compared to the traditional blood delivery model using vehicles, the total blood transportation cost decreased by 12.65% and the overall delivery time was reduced by 37.5% with the adoption of drone-assisted delivery; ultimately, case and sensitivity analyses were conducted to investigate the impact of variables including the number of blood transportation vehicles, UAVs, driver wages, and unit costs of blood transportation vehicles on the location-routing problem.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"21 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Location-routing optimization of UAV collaborative blood delivery vehicle distribution on complex roads\",\"authors\":\"Zhiyi Meng, Ke Yu, Rui Qiu\",\"doi\":\"10.1007/s40747-024-01591-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address the protracted blood transportation time prevalent in contemporary urban settings, we proposed a location-routing optimization problem tailored to the distribution of blood within intricate road networks. This involved a comprehensive assessment that encompassed the judicious selection of sites for both stations and blood centers, coupled with the meticulous planning of delivery routes for unmanned aerial vehicles (UAVs) that orchestrate the transportation of blood. First, a model was formulated to minimize the overall cost, including transportation expenses, costs associated with the site, and other relevant costs related to blood transportation vehicles coordinated by UAVs. Subsequently, a two-stage hybrid heuristic algorithm was designed based on the distinctive characteristics of the problem at hand. Moreover, an enhanced k-means algorithm was employed to generate clustering schemes, utilizing the centroid method to address the challenge of location selection for delivery sites effectively. A genetic algorithm enhanced with adaptive operators was employed to address the challenging large-scale NP-hard problem associated with route planning in intricate urban road networks. The results indicated that, compared to the traditional blood delivery model using vehicles, the total blood transportation cost decreased by 12.65% and the overall delivery time was reduced by 37.5% with the adoption of drone-assisted delivery; ultimately, case and sensitivity analyses were conducted to investigate the impact of variables including the number of blood transportation vehicles, UAVs, driver wages, and unit costs of blood transportation vehicles on the location-routing problem.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01591-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01591-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Location-routing optimization of UAV collaborative blood delivery vehicle distribution on complex roads
To address the protracted blood transportation time prevalent in contemporary urban settings, we proposed a location-routing optimization problem tailored to the distribution of blood within intricate road networks. This involved a comprehensive assessment that encompassed the judicious selection of sites for both stations and blood centers, coupled with the meticulous planning of delivery routes for unmanned aerial vehicles (UAVs) that orchestrate the transportation of blood. First, a model was formulated to minimize the overall cost, including transportation expenses, costs associated with the site, and other relevant costs related to blood transportation vehicles coordinated by UAVs. Subsequently, a two-stage hybrid heuristic algorithm was designed based on the distinctive characteristics of the problem at hand. Moreover, an enhanced k-means algorithm was employed to generate clustering schemes, utilizing the centroid method to address the challenge of location selection for delivery sites effectively. A genetic algorithm enhanced with adaptive operators was employed to address the challenging large-scale NP-hard problem associated with route planning in intricate urban road networks. The results indicated that, compared to the traditional blood delivery model using vehicles, the total blood transportation cost decreased by 12.65% and the overall delivery time was reduced by 37.5% with the adoption of drone-assisted delivery; ultimately, case and sensitivity analyses were conducted to investigate the impact of variables including the number of blood transportation vehicles, UAVs, driver wages, and unit costs of blood transportation vehicles on the location-routing problem.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.