优化 N 型隧道氧化物钝化接触式太阳能电池正面的钝化层

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Meiling Zhang , Meilin Peng , Qiqi Wang , Xi Xi , Guilin Liu , Lan Wang , Tingting Yan
{"title":"优化 N 型隧道氧化物钝化接触式太阳能电池正面的钝化层","authors":"Meiling Zhang ,&nbsp;Meilin Peng ,&nbsp;Qiqi Wang ,&nbsp;Xi Xi ,&nbsp;Guilin Liu ,&nbsp;Lan Wang ,&nbsp;Tingting Yan","doi":"10.1016/j.tsf.2024.140497","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an effective <em>P</em><sup>+</sup> emitter passivation scheme was proposed by continuously optimizing the passivation layer on the front surface of N-type tunnel oxide passivated contact (TOPCon) solar cells, that was using SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> tri-layer passivation stack. The SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> stack combined the benefits of the chemical passivation effect of SiO<sub>x</sub> and the field-effect passivation of SiO<sub>x</sub>/AlO<sub>x</sub> stack, resulting in high-quality passivation for boron-doped emitter. Three different passivation schemes of SiN<sub>x</sub>, AlO<sub>x</sub>/SiN<sub>x</sub> and SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> were respectively prepared on the front surface of N-type TOPCon solar cells. It was revealed that the cells with SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> stack had a superior conversion efficiency, while the SiO<sub>x</sub> thickness significantly influenced the surface passivation. Through optimization of SiO<sub>x</sub> thickness in the SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> stack, the optimal deposition period for SiO<sub>x</sub> was 4 cycles by the plasma-enhanced atomic layer deposition (PEALD) process. The N-type TOPCon solar cells with SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> stack on the front surface exhibited the highest performances with a conversion efficiency of 24.88 % when the deposition period of SiO<sub>x</sub> was 4 cycles. Compared with the baseline processes, the efficiency was increased by 0.11 %<sub>abs.</sub>.</p></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"804 ","pages":"Article 140497"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of passivation layer on the front surface of N-type tunnel oxide passivated contact solar cells\",\"authors\":\"Meiling Zhang ,&nbsp;Meilin Peng ,&nbsp;Qiqi Wang ,&nbsp;Xi Xi ,&nbsp;Guilin Liu ,&nbsp;Lan Wang ,&nbsp;Tingting Yan\",\"doi\":\"10.1016/j.tsf.2024.140497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, an effective <em>P</em><sup>+</sup> emitter passivation scheme was proposed by continuously optimizing the passivation layer on the front surface of N-type tunnel oxide passivated contact (TOPCon) solar cells, that was using SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> tri-layer passivation stack. The SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> stack combined the benefits of the chemical passivation effect of SiO<sub>x</sub> and the field-effect passivation of SiO<sub>x</sub>/AlO<sub>x</sub> stack, resulting in high-quality passivation for boron-doped emitter. Three different passivation schemes of SiN<sub>x</sub>, AlO<sub>x</sub>/SiN<sub>x</sub> and SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> were respectively prepared on the front surface of N-type TOPCon solar cells. It was revealed that the cells with SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> stack had a superior conversion efficiency, while the SiO<sub>x</sub> thickness significantly influenced the surface passivation. Through optimization of SiO<sub>x</sub> thickness in the SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> stack, the optimal deposition period for SiO<sub>x</sub> was 4 cycles by the plasma-enhanced atomic layer deposition (PEALD) process. The N-type TOPCon solar cells with SiO<sub>x</sub>/AlO<sub>x</sub>/SiN<sub>x</sub> stack on the front surface exhibited the highest performances with a conversion efficiency of 24.88 % when the deposition period of SiO<sub>x</sub> was 4 cycles. Compared with the baseline processes, the efficiency was increased by 0.11 %<sub>abs.</sub>.</p></div>\",\"PeriodicalId\":23182,\"journal\":{\"name\":\"Thin Solid Films\",\"volume\":\"804 \",\"pages\":\"Article 140497\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin Solid Films\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040609024002980\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609024002980","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过不断优化 N 型隧道氧化物钝化接触(TOPCon)太阳能电池前表面的钝化层,提出了一种有效的 P+ 发射极钝化方案,即使用 SiOx/AlOx/SiNx 三层钝化叠层。SiOx/AlOx/SiNx 堆栈结合了 SiOx 的化学钝化效果和 SiOx/AlOx 堆栈的场效应钝化效果,从而为掺硼发射极实现了高质量的钝化。在 N 型 TOPCon 太阳能电池的正面分别制备了 SiNx、AlOx/SiNx 和 SiOx/AlOx/SiNx 三种不同的钝化方案。结果表明,采用 SiOx/AlOx/SiNx 叠层的电池具有更高的转换效率,而 SiOx 的厚度对表面钝化有显著影响。通过优化 SiOx/AlOx/SiNx 叠层中的 SiOx 厚度,采用等离子体增强原子层沉积(PEALD)工艺,SiOx 的最佳沉积周期为 4 个周期。当 SiOx 的沉积周期为 4 个周期时,正面带有 SiOx/AlOx/SiNx 叠层的 N 型 TOPCon 太阳能电池表现出最高的性能,转换效率达到 24.88%。与基线工艺相比,效率提高了 0.11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of passivation layer on the front surface of N-type tunnel oxide passivated contact solar cells

In this paper, an effective P+ emitter passivation scheme was proposed by continuously optimizing the passivation layer on the front surface of N-type tunnel oxide passivated contact (TOPCon) solar cells, that was using SiOx/AlOx/SiNx tri-layer passivation stack. The SiOx/AlOx/SiNx stack combined the benefits of the chemical passivation effect of SiOx and the field-effect passivation of SiOx/AlOx stack, resulting in high-quality passivation for boron-doped emitter. Three different passivation schemes of SiNx, AlOx/SiNx and SiOx/AlOx/SiNx were respectively prepared on the front surface of N-type TOPCon solar cells. It was revealed that the cells with SiOx/AlOx/SiNx stack had a superior conversion efficiency, while the SiOx thickness significantly influenced the surface passivation. Through optimization of SiOx thickness in the SiOx/AlOx/SiNx stack, the optimal deposition period for SiOx was 4 cycles by the plasma-enhanced atomic layer deposition (PEALD) process. The N-type TOPCon solar cells with SiOx/AlOx/SiNx stack on the front surface exhibited the highest performances with a conversion efficiency of 24.88 % when the deposition period of SiOx was 4 cycles. Compared with the baseline processes, the efficiency was increased by 0.11 %abs..

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信