{"title":"应对 21 世纪粮食不安全和营养不良问题的常年绿色革命","authors":"Jacob D. Paul, Tymofiy Lutsiv, Henry J. Thompson","doi":"10.1002/fes3.568","DOIUrl":null,"url":null,"abstract":"<p>Farming practices of the past century have dramatically increased annual crop yields to unprecedented levels but have consequentially created increasing ecological and public health concerns, posing a long-term threat to global food security. Soil tillage and chemical inputs perpetuate soil erosion, biodiversity loss, wetlands eutrophication, carbon emissions, and other farming stressors. Concomitantly, accompanying poor dietary patterns and malnutrition increase the risk for chronic diseases, such as cardiovascular diseases, obesity, type 2 diabetes, and cancer, which account for greater than 70% of global mortality per annum. Altogether, such annual monocropping systems exacerbate food insecurity, necessitating action across the fields of public health, agriculture, nutrition, medicine, and environmental ecology, that is, a transdisciplinary approach. Herein, we argue that the perennialization of crops creates an opportunity to address the challenges of environmental sustainability and nutritional adequacy economically. Unlike annuals, perennial crops have deeper roots for increased drought tolerance and reduced needs for fertilization and irrigation. Adopting perenniality can result in greater drought tolerance and improved soil health while reducing erosion, farming labor, and seed purchasing. Furthermore, perennializing novel staple crops may offer a superior and diverse dietary profile of phytochemicals, fiber, and macronutrients compared to conventional annuals. Instead of traditional perennial tree crops, we focus on intermediate wheatgrass Kernza® (<i>Thinopyrum intermedium</i>) and sunflowers (<i>Helianthus tuberosus</i>, <i>H</i>. <i>maximiliani</i>, and <i>Silphium integrifolium</i>) as exemplars of perennial staple food crops for grain and oil, respectively, at different stages of perennial crop commercialization. Ultimately, we discuss how integrating perenniality has the potential to revolutionize global agriculture and address food security concerns for the remainder of the 21st century.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.568","citationCount":"0","resultStr":"{\"title\":\"A Perennial Green Revolution to address 21st-century food insecurity and malnutrition\",\"authors\":\"Jacob D. Paul, Tymofiy Lutsiv, Henry J. Thompson\",\"doi\":\"10.1002/fes3.568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Farming practices of the past century have dramatically increased annual crop yields to unprecedented levels but have consequentially created increasing ecological and public health concerns, posing a long-term threat to global food security. Soil tillage and chemical inputs perpetuate soil erosion, biodiversity loss, wetlands eutrophication, carbon emissions, and other farming stressors. Concomitantly, accompanying poor dietary patterns and malnutrition increase the risk for chronic diseases, such as cardiovascular diseases, obesity, type 2 diabetes, and cancer, which account for greater than 70% of global mortality per annum. Altogether, such annual monocropping systems exacerbate food insecurity, necessitating action across the fields of public health, agriculture, nutrition, medicine, and environmental ecology, that is, a transdisciplinary approach. Herein, we argue that the perennialization of crops creates an opportunity to address the challenges of environmental sustainability and nutritional adequacy economically. Unlike annuals, perennial crops have deeper roots for increased drought tolerance and reduced needs for fertilization and irrigation. Adopting perenniality can result in greater drought tolerance and improved soil health while reducing erosion, farming labor, and seed purchasing. Furthermore, perennializing novel staple crops may offer a superior and diverse dietary profile of phytochemicals, fiber, and macronutrients compared to conventional annuals. Instead of traditional perennial tree crops, we focus on intermediate wheatgrass Kernza® (<i>Thinopyrum intermedium</i>) and sunflowers (<i>Helianthus tuberosus</i>, <i>H</i>. <i>maximiliani</i>, and <i>Silphium integrifolium</i>) as exemplars of perennial staple food crops for grain and oil, respectively, at different stages of perennial crop commercialization. Ultimately, we discuss how integrating perenniality has the potential to revolutionize global agriculture and address food security concerns for the remainder of the 21st century.</p>\",\"PeriodicalId\":54283,\"journal\":{\"name\":\"Food and Energy Security\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.568\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Energy Security\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fes3.568\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.568","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A Perennial Green Revolution to address 21st-century food insecurity and malnutrition
Farming practices of the past century have dramatically increased annual crop yields to unprecedented levels but have consequentially created increasing ecological and public health concerns, posing a long-term threat to global food security. Soil tillage and chemical inputs perpetuate soil erosion, biodiversity loss, wetlands eutrophication, carbon emissions, and other farming stressors. Concomitantly, accompanying poor dietary patterns and malnutrition increase the risk for chronic diseases, such as cardiovascular diseases, obesity, type 2 diabetes, and cancer, which account for greater than 70% of global mortality per annum. Altogether, such annual monocropping systems exacerbate food insecurity, necessitating action across the fields of public health, agriculture, nutrition, medicine, and environmental ecology, that is, a transdisciplinary approach. Herein, we argue that the perennialization of crops creates an opportunity to address the challenges of environmental sustainability and nutritional adequacy economically. Unlike annuals, perennial crops have deeper roots for increased drought tolerance and reduced needs for fertilization and irrigation. Adopting perenniality can result in greater drought tolerance and improved soil health while reducing erosion, farming labor, and seed purchasing. Furthermore, perennializing novel staple crops may offer a superior and diverse dietary profile of phytochemicals, fiber, and macronutrients compared to conventional annuals. Instead of traditional perennial tree crops, we focus on intermediate wheatgrass Kernza® (Thinopyrum intermedium) and sunflowers (Helianthus tuberosus, H. maximiliani, and Silphium integrifolium) as exemplars of perennial staple food crops for grain and oil, respectively, at different stages of perennial crop commercialization. Ultimately, we discuss how integrating perenniality has the potential to revolutionize global agriculture and address food security concerns for the remainder of the 21st century.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology