Jiawei Li, Jiale Sun, Hongliang Lu, Yuming Zhang, Yuche Pan
{"title":"金属-MoS2界面接触性能影响因素研究","authors":"Jiawei Li, Jiale Sun, Hongliang Lu, Yuming Zhang, Yuche Pan","doi":"10.1016/j.sse.2024.108992","DOIUrl":null,"url":null,"abstract":"<div><p>The metal and two-dimension (2D) semiconductor contact interfaces have a more considerable contact resistance hindering carrier injection, which makes the performance of 2D semiconductor devices less than the theory. The contact properties of Ni, Au, and Mo with MoS<sub>2</sub> are simulated by the first-principles method. The interface dipole caused by the interface charge redistribution changes the work function difference at the metal-MoS<sub>2</sub> interface, so the interface charge redistribution is one of the important factors for correctly evaluating the contact properties. Due to the metal-induced gap states (MIGS) at metal-monolayer (ML) MoS<sub>2</sub> interfaces, the Fermi level is strongly pinned to fixed energy, and the Schottky barrier height (SBH) cannot be regulated efficiently by the metal work function. Although the work function of Au is bigger than Ni, the Fermi level of Au is pinned at a higher position. In the meantime, the bandgap of MoS<sub>2</sub> narrows and metallization occurs due to the larger MIGS. In the Mo-MoS<sub>2</sub> interface, the Fermi level is pinned near the conduction band minimum of MoS<sub>2</sub>. The contact resistances (R<sub>c</sub>) of the three structures are tested by the Circular Transfer Length Method (CTLM), which is consistent with the prediction of the simulation. The Mo-MoS<sub>2</sub> has the smallest R<sub>c</sub>. The results indicate that contact resistance of 2D semiconductors cannot be simply predicted by soled work functions or Fermi level pinning, but is determined by several factors.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"220 ","pages":"Article 108992"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The study on influence factors of contact properties of metal-MoS2 interfaces\",\"authors\":\"Jiawei Li, Jiale Sun, Hongliang Lu, Yuming Zhang, Yuche Pan\",\"doi\":\"10.1016/j.sse.2024.108992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The metal and two-dimension (2D) semiconductor contact interfaces have a more considerable contact resistance hindering carrier injection, which makes the performance of 2D semiconductor devices less than the theory. The contact properties of Ni, Au, and Mo with MoS<sub>2</sub> are simulated by the first-principles method. The interface dipole caused by the interface charge redistribution changes the work function difference at the metal-MoS<sub>2</sub> interface, so the interface charge redistribution is one of the important factors for correctly evaluating the contact properties. Due to the metal-induced gap states (MIGS) at metal-monolayer (ML) MoS<sub>2</sub> interfaces, the Fermi level is strongly pinned to fixed energy, and the Schottky barrier height (SBH) cannot be regulated efficiently by the metal work function. Although the work function of Au is bigger than Ni, the Fermi level of Au is pinned at a higher position. In the meantime, the bandgap of MoS<sub>2</sub> narrows and metallization occurs due to the larger MIGS. In the Mo-MoS<sub>2</sub> interface, the Fermi level is pinned near the conduction band minimum of MoS<sub>2</sub>. The contact resistances (R<sub>c</sub>) of the three structures are tested by the Circular Transfer Length Method (CTLM), which is consistent with the prediction of the simulation. The Mo-MoS<sub>2</sub> has the smallest R<sub>c</sub>. The results indicate that contact resistance of 2D semiconductors cannot be simply predicted by soled work functions or Fermi level pinning, but is determined by several factors.</p></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"220 \",\"pages\":\"Article 108992\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110124001412\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001412","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The study on influence factors of contact properties of metal-MoS2 interfaces
The metal and two-dimension (2D) semiconductor contact interfaces have a more considerable contact resistance hindering carrier injection, which makes the performance of 2D semiconductor devices less than the theory. The contact properties of Ni, Au, and Mo with MoS2 are simulated by the first-principles method. The interface dipole caused by the interface charge redistribution changes the work function difference at the metal-MoS2 interface, so the interface charge redistribution is one of the important factors for correctly evaluating the contact properties. Due to the metal-induced gap states (MIGS) at metal-monolayer (ML) MoS2 interfaces, the Fermi level is strongly pinned to fixed energy, and the Schottky barrier height (SBH) cannot be regulated efficiently by the metal work function. Although the work function of Au is bigger than Ni, the Fermi level of Au is pinned at a higher position. In the meantime, the bandgap of MoS2 narrows and metallization occurs due to the larger MIGS. In the Mo-MoS2 interface, the Fermi level is pinned near the conduction band minimum of MoS2. The contact resistances (Rc) of the three structures are tested by the Circular Transfer Length Method (CTLM), which is consistent with the prediction of the simulation. The Mo-MoS2 has the smallest Rc. The results indicate that contact resistance of 2D semiconductors cannot be simply predicted by soled work functions or Fermi level pinning, but is determined by several factors.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.