Ying Liang, Zi Wang, Deyang Huo, Jun-nan Hu, Lingjie Song, Xiaochi Ma, Shuang Jiang* and Wei Li*,
{"title":"麦芽酚通过增强自噬流缓解纳米塑料诱导的肝损伤:体内和体外研究","authors":"Ying Liang, Zi Wang, Deyang Huo, Jun-nan Hu, Lingjie Song, Xiaochi Ma, Shuang Jiang* and Wei Li*, ","doi":"10.1021/acs.jafc.4c0204010.1021/acs.jafc.4c02040","DOIUrl":null,"url":null,"abstract":"<p >In recent years, there has been a growing concern regarding health issues arising from exposure to nanoplastics (Nps) in the natural environment. The Nps bioaccumulate within the body <i>via</i> the circulatory system and accumulate in the liver, resulting in damage. Previous studies have demonstrated that maltol, derived from red ginseng (<i>Panax ginseng</i> C.A. Meyer) as a Maillard product, exhibits hepatoprotective effects by alleviating liver damage caused by carbon tetrachloride or cisplatin. In order to explore the specific mechanism of maltol in improving hepatotoxicity induced by Nps, mice exposed to 100 mg/kg Nps were given maltol at doses of 50 and 100 mg/kg, respectively. The results showed that Nps induced an increase in the levels of liver apoptotic factors BAX and cytochrome c, a decrease in the levels of the autophagy key gene LC3 II/I, and an increase in P62. It also caused oxidative stress by affecting the Nrf2/HO-1 pathway, and a decrease in GPX4 protein expression suggested the occurrence of ferroptosis. However, treatment with maltol significantly improved these changes. In addition, maltol (2, 4, and 8 μM) also protected human normal liver L02 cells from Np (400 μg/mL)-induced damage. Our data suggest that maltol could ameliorate Np-induced L02 cytotoxicity by reducing autophagy-dependent oxidative stress, exhibiting similar protective effects <i>in vitro</i> as <i>in vivo</i>. This study helps shed light on the specific molecular mechanism of Np-induced hepatotoxicity. For the first time, we studied the protective effect of maltol on Np-induced liver injury from multiple perspectives, expanding the possibility of treatment for diseases caused by environmental pollutants.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"72 29","pages":"16250–16262 16250–16262"},"PeriodicalIF":5.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoplastic-Induced Liver Damage Was Alleviated by Maltol via Enhancing Autophagic Flow: An In Vivo and In Vitro Study\",\"authors\":\"Ying Liang, Zi Wang, Deyang Huo, Jun-nan Hu, Lingjie Song, Xiaochi Ma, Shuang Jiang* and Wei Li*, \",\"doi\":\"10.1021/acs.jafc.4c0204010.1021/acs.jafc.4c02040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years, there has been a growing concern regarding health issues arising from exposure to nanoplastics (Nps) in the natural environment. The Nps bioaccumulate within the body <i>via</i> the circulatory system and accumulate in the liver, resulting in damage. Previous studies have demonstrated that maltol, derived from red ginseng (<i>Panax ginseng</i> C.A. Meyer) as a Maillard product, exhibits hepatoprotective effects by alleviating liver damage caused by carbon tetrachloride or cisplatin. In order to explore the specific mechanism of maltol in improving hepatotoxicity induced by Nps, mice exposed to 100 mg/kg Nps were given maltol at doses of 50 and 100 mg/kg, respectively. The results showed that Nps induced an increase in the levels of liver apoptotic factors BAX and cytochrome c, a decrease in the levels of the autophagy key gene LC3 II/I, and an increase in P62. It also caused oxidative stress by affecting the Nrf2/HO-1 pathway, and a decrease in GPX4 protein expression suggested the occurrence of ferroptosis. However, treatment with maltol significantly improved these changes. In addition, maltol (2, 4, and 8 μM) also protected human normal liver L02 cells from Np (400 μg/mL)-induced damage. Our data suggest that maltol could ameliorate Np-induced L02 cytotoxicity by reducing autophagy-dependent oxidative stress, exhibiting similar protective effects <i>in vitro</i> as <i>in vivo</i>. This study helps shed light on the specific molecular mechanism of Np-induced hepatotoxicity. For the first time, we studied the protective effect of maltol on Np-induced liver injury from multiple perspectives, expanding the possibility of treatment for diseases caused by environmental pollutants.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"72 29\",\"pages\":\"16250–16262 16250–16262\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jafc.4c02040\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.4c02040","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanoplastic-Induced Liver Damage Was Alleviated by Maltol via Enhancing Autophagic Flow: An In Vivo and In Vitro Study
In recent years, there has been a growing concern regarding health issues arising from exposure to nanoplastics (Nps) in the natural environment. The Nps bioaccumulate within the body via the circulatory system and accumulate in the liver, resulting in damage. Previous studies have demonstrated that maltol, derived from red ginseng (Panax ginseng C.A. Meyer) as a Maillard product, exhibits hepatoprotective effects by alleviating liver damage caused by carbon tetrachloride or cisplatin. In order to explore the specific mechanism of maltol in improving hepatotoxicity induced by Nps, mice exposed to 100 mg/kg Nps were given maltol at doses of 50 and 100 mg/kg, respectively. The results showed that Nps induced an increase in the levels of liver apoptotic factors BAX and cytochrome c, a decrease in the levels of the autophagy key gene LC3 II/I, and an increase in P62. It also caused oxidative stress by affecting the Nrf2/HO-1 pathway, and a decrease in GPX4 protein expression suggested the occurrence of ferroptosis. However, treatment with maltol significantly improved these changes. In addition, maltol (2, 4, and 8 μM) also protected human normal liver L02 cells from Np (400 μg/mL)-induced damage. Our data suggest that maltol could ameliorate Np-induced L02 cytotoxicity by reducing autophagy-dependent oxidative stress, exhibiting similar protective effects in vitro as in vivo. This study helps shed light on the specific molecular mechanism of Np-induced hepatotoxicity. For the first time, we studied the protective effect of maltol on Np-induced liver injury from multiple perspectives, expanding the possibility of treatment for diseases caused by environmental pollutants.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.