{"title":"基于 III-V 材料的无结型 L 形栅极法线隧道场效应晶体管,可提高性能","authors":"Aadil Anam, S Intekhab Amin and Dinesh Prasad","doi":"10.1088/1361-6641/ad689d","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel III–V compound material-based junction-free (JF) L-shaped gate normal line tunneling field-effect transistor (III–V JF L GNLTFET) for improved output performance at 0.5 V operation. The key design metric, i.e. JF or junctionless design, in our device eliminates issues like random dopant fluctuations (RDF) and high thermal budgets and streamlines the fabrication. The implementation of III–V compound material, i.e. low bandgap compound GaSb, in the source region, combined with the larger area gate normal line tunneling, improves the ON current for our proposed III–V JF L GNLTFET device. Additionally, the utilization of large bandgap GaAs compounds on the drain and channel sides eliminates ambipolarity and further enhances the performance of our proposed device. Meaning that the proposed device simultaneously improves the ON current and suppresses the ambipolarity. Our proposed III–V JF L GNLTFET exhibits enhanced output performance with an ON current of 23.2 μA μm−1 and a minimum and average subthreshold swing of 3.7 mV dec−1 and 15.82 mV dec−1 respectively. Furthermore, the proposed III–V JF L GNLTFET also gives superior RF/analog performance with transconductance (168.65 μS), cut-off frequency (33.52 GHz), gain-bandwidth product (5.11 GHz), and transconductance-frequency product (243.7 GHz).","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"27 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"III-V material-based junction-free L-shaped gate normal line tunneling FET for improved performance\",\"authors\":\"Aadil Anam, S Intekhab Amin and Dinesh Prasad\",\"doi\":\"10.1088/1361-6641/ad689d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel III–V compound material-based junction-free (JF) L-shaped gate normal line tunneling field-effect transistor (III–V JF L GNLTFET) for improved output performance at 0.5 V operation. The key design metric, i.e. JF or junctionless design, in our device eliminates issues like random dopant fluctuations (RDF) and high thermal budgets and streamlines the fabrication. The implementation of III–V compound material, i.e. low bandgap compound GaSb, in the source region, combined with the larger area gate normal line tunneling, improves the ON current for our proposed III–V JF L GNLTFET device. Additionally, the utilization of large bandgap GaAs compounds on the drain and channel sides eliminates ambipolarity and further enhances the performance of our proposed device. Meaning that the proposed device simultaneously improves the ON current and suppresses the ambipolarity. Our proposed III–V JF L GNLTFET exhibits enhanced output performance with an ON current of 23.2 μA μm−1 and a minimum and average subthreshold swing of 3.7 mV dec−1 and 15.82 mV dec−1 respectively. Furthermore, the proposed III–V JF L GNLTFET also gives superior RF/analog performance with transconductance (168.65 μS), cut-off frequency (33.52 GHz), gain-bandwidth product (5.11 GHz), and transconductance-frequency product (243.7 GHz).\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad689d\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad689d","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种基于 III-V 复合材料的新型无结 (JF) L 形栅极法线隧道场效应晶体管(III-V JF L GNLTFET),可提高 0.5 V 工作电压下的输出性能。我们器件的关键设计指标,即 JF 或无结设计,消除了随机掺杂波动 (RDF) 和高热预算等问题,并简化了制造过程。在源区采用 III-V 复合材料(即低带隙化合物 GaSb),结合大面积栅极法线隧道,提高了我们提出的 III-V JF L GNLTFET 器件的导通电流。此外,在漏极和沟道侧使用大带隙砷化镓化合物消除了伏极性,进一步提高了我们提出的器件的性能。这意味着所提出的器件能同时改善导通电流和抑制伏极性。我们提出的 III-V JF L GNLTFET 具有更高的输出性能,导通电流为 23.2 μA μm-1,最小和平均阈下摆幅分别为 3.7 mV dec-1 和 15.82 mV dec-1。此外,所提出的 III-V JF L GNLTFET 还具有出色的射频/模拟性能,包括跨导(168.65 μS)、截止频率(33.52 GHz)、增益带宽乘积(5.11 GHz)和跨导频率乘积(243.7 GHz)。
III-V material-based junction-free L-shaped gate normal line tunneling FET for improved performance
In this paper, we introduce a novel III–V compound material-based junction-free (JF) L-shaped gate normal line tunneling field-effect transistor (III–V JF L GNLTFET) for improved output performance at 0.5 V operation. The key design metric, i.e. JF or junctionless design, in our device eliminates issues like random dopant fluctuations (RDF) and high thermal budgets and streamlines the fabrication. The implementation of III–V compound material, i.e. low bandgap compound GaSb, in the source region, combined with the larger area gate normal line tunneling, improves the ON current for our proposed III–V JF L GNLTFET device. Additionally, the utilization of large bandgap GaAs compounds on the drain and channel sides eliminates ambipolarity and further enhances the performance of our proposed device. Meaning that the proposed device simultaneously improves the ON current and suppresses the ambipolarity. Our proposed III–V JF L GNLTFET exhibits enhanced output performance with an ON current of 23.2 μA μm−1 and a minimum and average subthreshold swing of 3.7 mV dec−1 and 15.82 mV dec−1 respectively. Furthermore, the proposed III–V JF L GNLTFET also gives superior RF/analog performance with transconductance (168.65 μS), cut-off frequency (33.52 GHz), gain-bandwidth product (5.11 GHz), and transconductance-frequency product (243.7 GHz).
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.