Kang-Hoon Choi;Jee Woong Choi;Sunhyo Kim;Peter H. Dahl;David R. Dall'Osto;Hee Chun Song
{"title":"利用单矢量传感器提高水下声学通信性能的实验研究","authors":"Kang-Hoon Choi;Jee Woong Choi;Sunhyo Kim;Peter H. Dahl;David R. Dall'Osto;Hee Chun Song","doi":"10.1109/JOE.2024.3374424","DOIUrl":null,"url":null,"abstract":"Underwater acoustic communication is heavily influenced by intersymbol interference caused by the delay spread of multipaths. In this article, communication sequences transmitted from a drifting source were received by a fixed acoustic vector receiver system consisting of an accelerometer-based vector sensor and a pressure sensor, which can measure the three-directional components of vector quantity and pressure at a point. The underwater acoustic communication experiment was conducted in water approximately 30 m deep off the south coast of Geoje Island, South Korea, in May 2017 during the Korea Reverberation Experiment. Acceleration signals received by the vector sensor were converted to pressure-equivalent particle velocities, which were then used as input for a four-channel communication system together with acoustic pressure. These four channels have multipaths with different amplitudes but the same delay times, providing directional diversity that differs from the spatial diversity provided by hydrophone arrays. To improve the communication performance obtained from directional diversity, the Multichannel Combined Bidirectional Block-based Time Reversal Technique was used, which combines bidirectional equalization with time-reversal diversity and block-based time reversal that was robust against time-varying channels. Communication performance was compared with the outcomes produced by several other time reversal techniques. The results show that the Multichannel Combined Bidirectional Block-based Time Reversal Technique using a vector sensor achieved superior performance under the environmental conditions considered in this article.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"49 4","pages":"1574-1587"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10545562","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on Performance Improvement of Underwater Acoustic Communication Using a Single Vector Sensor\",\"authors\":\"Kang-Hoon Choi;Jee Woong Choi;Sunhyo Kim;Peter H. Dahl;David R. Dall'Osto;Hee Chun Song\",\"doi\":\"10.1109/JOE.2024.3374424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater acoustic communication is heavily influenced by intersymbol interference caused by the delay spread of multipaths. In this article, communication sequences transmitted from a drifting source were received by a fixed acoustic vector receiver system consisting of an accelerometer-based vector sensor and a pressure sensor, which can measure the three-directional components of vector quantity and pressure at a point. The underwater acoustic communication experiment was conducted in water approximately 30 m deep off the south coast of Geoje Island, South Korea, in May 2017 during the Korea Reverberation Experiment. Acceleration signals received by the vector sensor were converted to pressure-equivalent particle velocities, which were then used as input for a four-channel communication system together with acoustic pressure. These four channels have multipaths with different amplitudes but the same delay times, providing directional diversity that differs from the spatial diversity provided by hydrophone arrays. To improve the communication performance obtained from directional diversity, the Multichannel Combined Bidirectional Block-based Time Reversal Technique was used, which combines bidirectional equalization with time-reversal diversity and block-based time reversal that was robust against time-varying channels. Communication performance was compared with the outcomes produced by several other time reversal techniques. The results show that the Multichannel Combined Bidirectional Block-based Time Reversal Technique using a vector sensor achieved superior performance under the environmental conditions considered in this article.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"49 4\",\"pages\":\"1574-1587\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10545562\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10545562/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10545562/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental Study on Performance Improvement of Underwater Acoustic Communication Using a Single Vector Sensor
Underwater acoustic communication is heavily influenced by intersymbol interference caused by the delay spread of multipaths. In this article, communication sequences transmitted from a drifting source were received by a fixed acoustic vector receiver system consisting of an accelerometer-based vector sensor and a pressure sensor, which can measure the three-directional components of vector quantity and pressure at a point. The underwater acoustic communication experiment was conducted in water approximately 30 m deep off the south coast of Geoje Island, South Korea, in May 2017 during the Korea Reverberation Experiment. Acceleration signals received by the vector sensor were converted to pressure-equivalent particle velocities, which were then used as input for a four-channel communication system together with acoustic pressure. These four channels have multipaths with different amplitudes but the same delay times, providing directional diversity that differs from the spatial diversity provided by hydrophone arrays. To improve the communication performance obtained from directional diversity, the Multichannel Combined Bidirectional Block-based Time Reversal Technique was used, which combines bidirectional equalization with time-reversal diversity and block-based time reversal that was robust against time-varying channels. Communication performance was compared with the outcomes produced by several other time reversal techniques. The results show that the Multichannel Combined Bidirectional Block-based Time Reversal Technique using a vector sensor achieved superior performance under the environmental conditions considered in this article.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.