Yuxuan Chen;Zhen Zhang;Yuhui Deng;Geyong Min;Lin Cui
{"title":"云数据中心虚拟机整合战略的综合趋势","authors":"Yuxuan Chen;Zhen Zhang;Yuhui Deng;Geyong Min;Lin Cui","doi":"10.1109/TC.2024.3416734","DOIUrl":null,"url":null,"abstract":"Virtual machine (VM) consolidation strategies are widely used in cloud data centers (CDC) to optimize resource utilization and reduce total energy consumption. Although existing strategies consider current and future resource utilization, the impact of sudden bursts in historical resource utilization on the hosts has been underestimated in uncertain future periods. Insufficient analysis of historical resource utilization may increase the risk of host overloading and Service Level Agreement Violation (SLAV). By defining historical and future trends based on resource utilization, we propose a novel combined trend VM consolidation (CTVMC) strategy which can effectively reduce energy consumption and SLAV. The VMs with the largest combined trend are selected for migration to prevent host overloading. Based on the temporal locality and prediction technique, CTVMC then employs the past, present, and future resource utilization to filter candidate hosts, and identifies the most complementary host to place VM using combined trends. We conduct extensive simulation experiments with PlanetLab Trace and Google Cluster Trace in the CloudSim simulator. Compared with the well-known strategies, CTVMC strategy using the PlanetLab Trace can reduce the number of migrations by over 72.39%, SLAV by over 75.85%, and ESV (a combined metric that judges the trade-off between energy consumption and SLAV) by over 81.54%. According to the Google Cluster Trace, our strategy can reduce the number of migrations by over 61.51%, SLAV by over 37.37%, and ESV by over 35.30%.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 9","pages":"2150-2164"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Combined Trend Virtual Machine Consolidation Strategy for Cloud Data Centers\",\"authors\":\"Yuxuan Chen;Zhen Zhang;Yuhui Deng;Geyong Min;Lin Cui\",\"doi\":\"10.1109/TC.2024.3416734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual machine (VM) consolidation strategies are widely used in cloud data centers (CDC) to optimize resource utilization and reduce total energy consumption. Although existing strategies consider current and future resource utilization, the impact of sudden bursts in historical resource utilization on the hosts has been underestimated in uncertain future periods. Insufficient analysis of historical resource utilization may increase the risk of host overloading and Service Level Agreement Violation (SLAV). By defining historical and future trends based on resource utilization, we propose a novel combined trend VM consolidation (CTVMC) strategy which can effectively reduce energy consumption and SLAV. The VMs with the largest combined trend are selected for migration to prevent host overloading. Based on the temporal locality and prediction technique, CTVMC then employs the past, present, and future resource utilization to filter candidate hosts, and identifies the most complementary host to place VM using combined trends. We conduct extensive simulation experiments with PlanetLab Trace and Google Cluster Trace in the CloudSim simulator. Compared with the well-known strategies, CTVMC strategy using the PlanetLab Trace can reduce the number of migrations by over 72.39%, SLAV by over 75.85%, and ESV (a combined metric that judges the trade-off between energy consumption and SLAV) by over 81.54%. According to the Google Cluster Trace, our strategy can reduce the number of migrations by over 61.51%, SLAV by over 37.37%, and ESV by over 35.30%.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"73 9\",\"pages\":\"2150-2164\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10565293/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10565293/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Combined Trend Virtual Machine Consolidation Strategy for Cloud Data Centers
Virtual machine (VM) consolidation strategies are widely used in cloud data centers (CDC) to optimize resource utilization and reduce total energy consumption. Although existing strategies consider current and future resource utilization, the impact of sudden bursts in historical resource utilization on the hosts has been underestimated in uncertain future periods. Insufficient analysis of historical resource utilization may increase the risk of host overloading and Service Level Agreement Violation (SLAV). By defining historical and future trends based on resource utilization, we propose a novel combined trend VM consolidation (CTVMC) strategy which can effectively reduce energy consumption and SLAV. The VMs with the largest combined trend are selected for migration to prevent host overloading. Based on the temporal locality and prediction technique, CTVMC then employs the past, present, and future resource utilization to filter candidate hosts, and identifies the most complementary host to place VM using combined trends. We conduct extensive simulation experiments with PlanetLab Trace and Google Cluster Trace in the CloudSim simulator. Compared with the well-known strategies, CTVMC strategy using the PlanetLab Trace can reduce the number of migrations by over 72.39%, SLAV by over 75.85%, and ESV (a combined metric that judges the trade-off between energy consumption and SLAV) by over 81.54%. According to the Google Cluster Trace, our strategy can reduce the number of migrations by over 61.51%, SLAV by over 37.37%, and ESV by over 35.30%.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.