{"title":"生命周期评估 (LCA) 和多标准决策 (MCDM):电力电子封装用封装材料评估","authors":"Jiaxuan Wang;Pan Liu","doi":"10.1109/TCPMT.2024.3413723","DOIUrl":null,"url":null,"abstract":"With the development of power electronics, there is an increasing demand for high-temperature packaging materials, especially for encapsulants such as calcium aluminate, phosphate cement-based materials (CEs), etc. Therefore, environmental impact analysis for such novel encapsulants becomes necessary. In this article, four encapsulation materials were first evaluated through life cycle assessment (LCA) for environmental impact, including three polymer-based materials, namely epoxy (EP) resin, polyurethane (PU), and silicone gel (SG) and a novel calcium aluminate CE, with the utilization of software Simapro and the method ReCiPe2016. The LCA revealed that CE emerged as the most environmentally friendly option, followed by EP, PU, and SG. The results of LCA, together with six other criteria, namely maximum operating temperature, coefficient of thermal expansion (CTE), thermal conductivity (TC), volume resistivity (R\n<inline-formula> <tex-math>$_{\\mathrm {V}}$ </tex-math></inline-formula>\n), viscosity, and costs, were further taken into account for a multicriteria decision making (MCDM) calculation for suitability. With the analytic hierarchy process (AHP) weighting method and the technique of order preference similarity to the ideal solution (TOPSIS) evaluation method applied, the MCDM results presented the preference ranking order of the encapsulants which was CE, EP, PU, SG. According to the findings from LCA and MCDM, CE received an outstanding evaluation result, which indicates its great potential as an encapsulation material for power electronics packaging.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life Cycle Assessment (LCA) and Multicriteria Decision Making (MCDM): An Evaluation of Encapsulants for Power Electronics Packaging\",\"authors\":\"Jiaxuan Wang;Pan Liu\",\"doi\":\"10.1109/TCPMT.2024.3413723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of power electronics, there is an increasing demand for high-temperature packaging materials, especially for encapsulants such as calcium aluminate, phosphate cement-based materials (CEs), etc. Therefore, environmental impact analysis for such novel encapsulants becomes necessary. In this article, four encapsulation materials were first evaluated through life cycle assessment (LCA) for environmental impact, including three polymer-based materials, namely epoxy (EP) resin, polyurethane (PU), and silicone gel (SG) and a novel calcium aluminate CE, with the utilization of software Simapro and the method ReCiPe2016. The LCA revealed that CE emerged as the most environmentally friendly option, followed by EP, PU, and SG. The results of LCA, together with six other criteria, namely maximum operating temperature, coefficient of thermal expansion (CTE), thermal conductivity (TC), volume resistivity (R\\n<inline-formula> <tex-math>$_{\\\\mathrm {V}}$ </tex-math></inline-formula>\\n), viscosity, and costs, were further taken into account for a multicriteria decision making (MCDM) calculation for suitability. With the analytic hierarchy process (AHP) weighting method and the technique of order preference similarity to the ideal solution (TOPSIS) evaluation method applied, the MCDM results presented the preference ranking order of the encapsulants which was CE, EP, PU, SG. According to the findings from LCA and MCDM, CE received an outstanding evaluation result, which indicates its great potential as an encapsulation material for power electronics packaging.\",\"PeriodicalId\":13085,\"journal\":{\"name\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10557136/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10557136/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Life Cycle Assessment (LCA) and Multicriteria Decision Making (MCDM): An Evaluation of Encapsulants for Power Electronics Packaging
With the development of power electronics, there is an increasing demand for high-temperature packaging materials, especially for encapsulants such as calcium aluminate, phosphate cement-based materials (CEs), etc. Therefore, environmental impact analysis for such novel encapsulants becomes necessary. In this article, four encapsulation materials were first evaluated through life cycle assessment (LCA) for environmental impact, including three polymer-based materials, namely epoxy (EP) resin, polyurethane (PU), and silicone gel (SG) and a novel calcium aluminate CE, with the utilization of software Simapro and the method ReCiPe2016. The LCA revealed that CE emerged as the most environmentally friendly option, followed by EP, PU, and SG. The results of LCA, together with six other criteria, namely maximum operating temperature, coefficient of thermal expansion (CTE), thermal conductivity (TC), volume resistivity (R
$_{\mathrm {V}}$
), viscosity, and costs, were further taken into account for a multicriteria decision making (MCDM) calculation for suitability. With the analytic hierarchy process (AHP) weighting method and the technique of order preference similarity to the ideal solution (TOPSIS) evaluation method applied, the MCDM results presented the preference ranking order of the encapsulants which was CE, EP, PU, SG. According to the findings from LCA and MCDM, CE received an outstanding evaluation result, which indicates its great potential as an encapsulation material for power electronics packaging.
期刊介绍:
IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.