{"title":"通过时基分馏和酶活性测定从芪蛭羌活胶囊传统中药处方中发现α-葡萄糖苷酶/乙酰胆碱酯酶抑制剂","authors":"Hui-Peng Song, Ming-Yue Zhao, Zhi-Li Xu, Jia-Nuo Zhang, Wen-Yu Wang, Zi-Xuan Ding, Ying Wang, Li-Bin Zhan, Xi Chen, Ruo-Nan Li, Yue-Hua Chen","doi":"10.1177/1934578x241272684","DOIUrl":null,"url":null,"abstract":"ObjectivesThe aim is to discover α-glucosidase/acetylcholinesterase inhibitors as lead compounds from a traditional herbal prescription of Qi-Li-Qiang-Xin capsule (QLQX).MethodsA novel strategy combining time-based fractionation, LC-QTOF-MS, enzymatic activity assay, molecular docking and component-target association analysis was performed to discover α-glucosidase/acetylcholinesterase inhibitors from QLQX. Time-based fractionation combined with enzymatic activity assay was used to find the distribution period of active compounds in the herbal prescription. LC-QTOF-MS was used to analyze the structure of active compounds. Molecular docking was applied to explore the interaction between active compounds and targets.ResultsAccording to time-based fractionation, the active components of QLQX for acetylcholinesterase were primarily concentrated in the highly polar region, whereas the active components for α-glucosidase were predominantly found in the moderately polar area. A total of 33 compounds were identified by comparing with chemical reference substances. Dihydrotanshinone Ⅰ (16.98 µM), hydroxysafflor yellow A (84.57 µM), salvianolic acid A (76.62 µM) and cryptotanshinone (112.68 µM) were identified as acetylcholinesterase inhibitors from QLQX. Similarly, rosmarinic acid (62.29 µM), isochlorogenic acid A (17.95 µM), 4,5-dicaffeoylquinic acid (117.93 µM), danshensu (207.88 µM), salvianolic acid A (1.31 µM), 3,4-dicaffeoylquinic acid (91.71 µM), formononetin (67.26 µM), ginsenoside Rd (3.43 µM), ginsenoside Rb1 (26.37 µM) and ginsenoside F1 (18.79 µM) were discovered as α-glucosidase inhibitors. Notably, salvianolic acid A inhibited both acetylcholinesterase and α-glucosidase. The results of molecular docking indicated that hydrogen bonds, hydrophobic interactions and Pi-Pi T-shaped interactions were crucial for inhibiting acetylcholinesterase. Meanwhile, hydrogen bonds, hydrophobic interactions and Pi-Pi stacked interactions were significant in suppressing α-glucosidase.ConclusionQLQX contains numerous acetylcholinesterase and α-glucosidase inhibitors, demonstrating its potential therapeutic benefits for Alzheimer's disease and diabetes.","PeriodicalId":19019,"journal":{"name":"Natural Product Communications","volume":"85 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of α-Glucosidase/Acetylcholinesterase Inhibitors from a Traditional Herbal Prescription of Qi-Li-Qiang-Xin Capsule by Time-Based Fractionation and Enzymatic Activity Assay\",\"authors\":\"Hui-Peng Song, Ming-Yue Zhao, Zhi-Li Xu, Jia-Nuo Zhang, Wen-Yu Wang, Zi-Xuan Ding, Ying Wang, Li-Bin Zhan, Xi Chen, Ruo-Nan Li, Yue-Hua Chen\",\"doi\":\"10.1177/1934578x241272684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ObjectivesThe aim is to discover α-glucosidase/acetylcholinesterase inhibitors as lead compounds from a traditional herbal prescription of Qi-Li-Qiang-Xin capsule (QLQX).MethodsA novel strategy combining time-based fractionation, LC-QTOF-MS, enzymatic activity assay, molecular docking and component-target association analysis was performed to discover α-glucosidase/acetylcholinesterase inhibitors from QLQX. Time-based fractionation combined with enzymatic activity assay was used to find the distribution period of active compounds in the herbal prescription. LC-QTOF-MS was used to analyze the structure of active compounds. Molecular docking was applied to explore the interaction between active compounds and targets.ResultsAccording to time-based fractionation, the active components of QLQX for acetylcholinesterase were primarily concentrated in the highly polar region, whereas the active components for α-glucosidase were predominantly found in the moderately polar area. A total of 33 compounds were identified by comparing with chemical reference substances. Dihydrotanshinone Ⅰ (16.98 µM), hydroxysafflor yellow A (84.57 µM), salvianolic acid A (76.62 µM) and cryptotanshinone (112.68 µM) were identified as acetylcholinesterase inhibitors from QLQX. Similarly, rosmarinic acid (62.29 µM), isochlorogenic acid A (17.95 µM), 4,5-dicaffeoylquinic acid (117.93 µM), danshensu (207.88 µM), salvianolic acid A (1.31 µM), 3,4-dicaffeoylquinic acid (91.71 µM), formononetin (67.26 µM), ginsenoside Rd (3.43 µM), ginsenoside Rb1 (26.37 µM) and ginsenoside F1 (18.79 µM) were discovered as α-glucosidase inhibitors. Notably, salvianolic acid A inhibited both acetylcholinesterase and α-glucosidase. The results of molecular docking indicated that hydrogen bonds, hydrophobic interactions and Pi-Pi T-shaped interactions were crucial for inhibiting acetylcholinesterase. Meanwhile, hydrogen bonds, hydrophobic interactions and Pi-Pi stacked interactions were significant in suppressing α-glucosidase.ConclusionQLQX contains numerous acetylcholinesterase and α-glucosidase inhibitors, demonstrating its potential therapeutic benefits for Alzheimer's disease and diabetes.\",\"PeriodicalId\":19019,\"journal\":{\"name\":\"Natural Product Communications\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/1934578x241272684\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1934578x241272684","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery of α-Glucosidase/Acetylcholinesterase Inhibitors from a Traditional Herbal Prescription of Qi-Li-Qiang-Xin Capsule by Time-Based Fractionation and Enzymatic Activity Assay
ObjectivesThe aim is to discover α-glucosidase/acetylcholinesterase inhibitors as lead compounds from a traditional herbal prescription of Qi-Li-Qiang-Xin capsule (QLQX).MethodsA novel strategy combining time-based fractionation, LC-QTOF-MS, enzymatic activity assay, molecular docking and component-target association analysis was performed to discover α-glucosidase/acetylcholinesterase inhibitors from QLQX. Time-based fractionation combined with enzymatic activity assay was used to find the distribution period of active compounds in the herbal prescription. LC-QTOF-MS was used to analyze the structure of active compounds. Molecular docking was applied to explore the interaction between active compounds and targets.ResultsAccording to time-based fractionation, the active components of QLQX for acetylcholinesterase were primarily concentrated in the highly polar region, whereas the active components for α-glucosidase were predominantly found in the moderately polar area. A total of 33 compounds were identified by comparing with chemical reference substances. Dihydrotanshinone Ⅰ (16.98 µM), hydroxysafflor yellow A (84.57 µM), salvianolic acid A (76.62 µM) and cryptotanshinone (112.68 µM) were identified as acetylcholinesterase inhibitors from QLQX. Similarly, rosmarinic acid (62.29 µM), isochlorogenic acid A (17.95 µM), 4,5-dicaffeoylquinic acid (117.93 µM), danshensu (207.88 µM), salvianolic acid A (1.31 µM), 3,4-dicaffeoylquinic acid (91.71 µM), formononetin (67.26 µM), ginsenoside Rd (3.43 µM), ginsenoside Rb1 (26.37 µM) and ginsenoside F1 (18.79 µM) were discovered as α-glucosidase inhibitors. Notably, salvianolic acid A inhibited both acetylcholinesterase and α-glucosidase. The results of molecular docking indicated that hydrogen bonds, hydrophobic interactions and Pi-Pi T-shaped interactions were crucial for inhibiting acetylcholinesterase. Meanwhile, hydrogen bonds, hydrophobic interactions and Pi-Pi stacked interactions were significant in suppressing α-glucosidase.ConclusionQLQX contains numerous acetylcholinesterase and α-glucosidase inhibitors, demonstrating its potential therapeutic benefits for Alzheimer's disease and diabetes.
期刊介绍:
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.