环境压力下可蜕变二酸酐的超导性

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Heejung Kim, Ina Park, J. H. Shim, D. Y. Kim
{"title":"环境压力下可蜕变二酸酐的超导性","authors":"Heejung Kim, Ina Park, J. H. Shim, D. Y. Kim","doi":"10.1038/s41524-024-01359-7","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen in metals is a significant research area with far-reaching implications, encompassing diverse fields such as hydrogen storage, metal-insulator transitions, and the recently emerging phenomenon of room-temperature superconductivity under high pressure. Hydrogen atoms pose challenges in experiments as they are nearly invisible, and they are considered within ideal crystalline structures in theoretical predictions, which hampers research on the formation of metastable hydrides. Here, we propose pressure-induced hydrogen migration from tetrahedral (T-) site to octahedral (O-) site, forming <span>\\({{\\rm{LaH}}}_{x}^{{\\rm{O}}}{{\\rm{H}}}_{2-x}^{{\\rm{T}}}\\)</span> in cubic LaH<sub>2.</sub> Under decompression, it retains <span>\\({{\\rm{H}}}_{x}^{{\\rm{O}}}\\)</span> occupancy, and is dynamically stable even at ambient pressure, enabling a synthesis route of metastable dihydrides via compression-decompression process. We predict that the electron-phonon coupling strength of <span>\\({{\\rm{LaH}}}_{x}^{{\\rm{O}}}{{\\rm{H}}}_{2-x}^{{\\rm{T}}}\\)</span> is enhanced with increasing <i>x</i>, and the associated <i>T</i><sub>c</sub> reaches up to 10.8 K at ambient pressure. Furthermore, we calculated stoichiometric hydrogen migration threshold pressure (<i>P</i><sub><i>c</i></sub>) for various lanthanides dihydrides (<i>R</i>H<sub>2</sub>, where <i>R</i> = Y, Sc, Nd, and Lu), and found an inversely linear relation between <i>P</i><sub><i>c</i></sub> and ionic radii of <i>R</i>. We propose that the highest <i>T</i><sub>c</sub> in the face-centered-cubic dihydride system can be realized by optimizing the O/T-site occupancies.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"56 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconductivity of metastable dihydrides at ambient pressure\",\"authors\":\"Heejung Kim, Ina Park, J. H. Shim, D. Y. Kim\",\"doi\":\"10.1038/s41524-024-01359-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogen in metals is a significant research area with far-reaching implications, encompassing diverse fields such as hydrogen storage, metal-insulator transitions, and the recently emerging phenomenon of room-temperature superconductivity under high pressure. Hydrogen atoms pose challenges in experiments as they are nearly invisible, and they are considered within ideal crystalline structures in theoretical predictions, which hampers research on the formation of metastable hydrides. Here, we propose pressure-induced hydrogen migration from tetrahedral (T-) site to octahedral (O-) site, forming <span>\\\\({{\\\\rm{LaH}}}_{x}^{{\\\\rm{O}}}{{\\\\rm{H}}}_{2-x}^{{\\\\rm{T}}}\\\\)</span> in cubic LaH<sub>2.</sub> Under decompression, it retains <span>\\\\({{\\\\rm{H}}}_{x}^{{\\\\rm{O}}}\\\\)</span> occupancy, and is dynamically stable even at ambient pressure, enabling a synthesis route of metastable dihydrides via compression-decompression process. We predict that the electron-phonon coupling strength of <span>\\\\({{\\\\rm{LaH}}}_{x}^{{\\\\rm{O}}}{{\\\\rm{H}}}_{2-x}^{{\\\\rm{T}}}\\\\)</span> is enhanced with increasing <i>x</i>, and the associated <i>T</i><sub>c</sub> reaches up to 10.8 K at ambient pressure. Furthermore, we calculated stoichiometric hydrogen migration threshold pressure (<i>P</i><sub><i>c</i></sub>) for various lanthanides dihydrides (<i>R</i>H<sub>2</sub>, where <i>R</i> = Y, Sc, Nd, and Lu), and found an inversely linear relation between <i>P</i><sub><i>c</i></sub> and ionic radii of <i>R</i>. We propose that the highest <i>T</i><sub>c</sub> in the face-centered-cubic dihydride system can be realized by optimizing the O/T-site occupancies.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01359-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01359-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属中的氢是一个具有深远影响的重要研究领域,涉及氢储存、金属-绝缘体转变以及最近出现的高压室温超导现象等多个领域。氢原子几乎不可见,因此给实验带来了挑战,而在理论预测中,氢原子被认为是理想晶体结构中的氢原子,这阻碍了对可迁移氢化物形成的研究。在这里,我们提出了压力诱导氢从四面体(T-)位迁移到八面体(O-)位,在立方体 LaH2 中形成 \({{\rm{LaH}}}_{x}^{{\rm{O}}}}{{rm{H}}}_{2-x}^{\rm{T}}})。在减压条件下,它仍能保持 \({{\rm{H}}}_{x}^{{\rm{O}}} 的占有率,即使在环境压力下也能保持动态稳定,这就为通过压缩-减压过程合成可转移的二氢化物提供了一条途径。我们预测,随着 x 的增加,\({{\rm{LaH}}}_{x}^{{\rm{O}}}}{{\rm{H}}}_{2-x}^{\rm{T}}}\ 的电子-声子耦合强度会增强,在环境压力下,相关的 Tc 最高可达 10.8 K。此外,我们还计算了各种镧系元素二酐(RH2,其中 R = Y、Sc、Nd 和 Lu)的化学计量氢迁移阈压(Pc),发现 Pc 与 R 的离子半径之间存在反比线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superconductivity of metastable dihydrides at ambient pressure

Superconductivity of metastable dihydrides at ambient pressure

Hydrogen in metals is a significant research area with far-reaching implications, encompassing diverse fields such as hydrogen storage, metal-insulator transitions, and the recently emerging phenomenon of room-temperature superconductivity under high pressure. Hydrogen atoms pose challenges in experiments as they are nearly invisible, and they are considered within ideal crystalline structures in theoretical predictions, which hampers research on the formation of metastable hydrides. Here, we propose pressure-induced hydrogen migration from tetrahedral (T-) site to octahedral (O-) site, forming \({{\rm{LaH}}}_{x}^{{\rm{O}}}{{\rm{H}}}_{2-x}^{{\rm{T}}}\) in cubic LaH2. Under decompression, it retains \({{\rm{H}}}_{x}^{{\rm{O}}}\) occupancy, and is dynamically stable even at ambient pressure, enabling a synthesis route of metastable dihydrides via compression-decompression process. We predict that the electron-phonon coupling strength of \({{\rm{LaH}}}_{x}^{{\rm{O}}}{{\rm{H}}}_{2-x}^{{\rm{T}}}\) is enhanced with increasing x, and the associated Tc reaches up to 10.8 K at ambient pressure. Furthermore, we calculated stoichiometric hydrogen migration threshold pressure (Pc) for various lanthanides dihydrides (RH2, where R = Y, Sc, Nd, and Lu), and found an inversely linear relation between Pc and ionic radii of R. We propose that the highest Tc in the face-centered-cubic dihydride system can be realized by optimizing the O/T-site occupancies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信