Jianjun Ni, Tong Shen, Yonghao Zhao, Guangyi Tang, Yang Gu
{"title":"基于域内和域间对比学习的改进型跨域顺序推荐模型","authors":"Jianjun Ni, Tong Shen, Yonghao Zhao, Guangyi Tang, Yang Gu","doi":"10.1007/s40747-024-01590-1","DOIUrl":null,"url":null,"abstract":"<p>Cross-domain recommendation aims to integrate data from multiple domains and introduce information from source domains, thereby achieving good recommendations on the target domain. Recently, contrastive learning has been introduced into the cross-domain recommendations and has obtained some better results. However, most cross-domain recommendation algorithms based on contrastive learning suffer from the bias problem. In addition, the correlation between the user’s single-domain and cross-domain preferences is not considered. To address these problems, a new recommendation model is proposed for cross-domain scenarios based on intra-domain and inter-domain contrastive learning, which aims to obtain unbiased user preferences in cross-domain scenarios and improve the recommendation performance of both domains. Firstly, a network enhancement module is proposed to capture users’ complete preference by applying a graphical convolution and attentional aggregator. This module can reduce the limitations of only considering user preferences in a single domain. Then, a cross-domain infomax objective with noise contrast is presented to ensure that users’ single-domain and cross-domain preferences are correlated closely in sequential interactions. Finally, a joint training strategy is designed to improve the recommendation performances of two domains, which can achieve unbiased cross-domain recommendation results. At last, extensive experiments are conducted on two real-world cross-domain scenarios. The experimental results show that the proposed model in this paper achieves the best recommendation results in comparison with existing models.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"152 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved cross-domain sequential recommendation model based on intra-domain and inter-domain contrastive learning\",\"authors\":\"Jianjun Ni, Tong Shen, Yonghao Zhao, Guangyi Tang, Yang Gu\",\"doi\":\"10.1007/s40747-024-01590-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cross-domain recommendation aims to integrate data from multiple domains and introduce information from source domains, thereby achieving good recommendations on the target domain. Recently, contrastive learning has been introduced into the cross-domain recommendations and has obtained some better results. However, most cross-domain recommendation algorithms based on contrastive learning suffer from the bias problem. In addition, the correlation between the user’s single-domain and cross-domain preferences is not considered. To address these problems, a new recommendation model is proposed for cross-domain scenarios based on intra-domain and inter-domain contrastive learning, which aims to obtain unbiased user preferences in cross-domain scenarios and improve the recommendation performance of both domains. Firstly, a network enhancement module is proposed to capture users’ complete preference by applying a graphical convolution and attentional aggregator. This module can reduce the limitations of only considering user preferences in a single domain. Then, a cross-domain infomax objective with noise contrast is presented to ensure that users’ single-domain and cross-domain preferences are correlated closely in sequential interactions. Finally, a joint training strategy is designed to improve the recommendation performances of two domains, which can achieve unbiased cross-domain recommendation results. At last, extensive experiments are conducted on two real-world cross-domain scenarios. The experimental results show that the proposed model in this paper achieves the best recommendation results in comparison with existing models.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01590-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01590-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An improved cross-domain sequential recommendation model based on intra-domain and inter-domain contrastive learning
Cross-domain recommendation aims to integrate data from multiple domains and introduce information from source domains, thereby achieving good recommendations on the target domain. Recently, contrastive learning has been introduced into the cross-domain recommendations and has obtained some better results. However, most cross-domain recommendation algorithms based on contrastive learning suffer from the bias problem. In addition, the correlation between the user’s single-domain and cross-domain preferences is not considered. To address these problems, a new recommendation model is proposed for cross-domain scenarios based on intra-domain and inter-domain contrastive learning, which aims to obtain unbiased user preferences in cross-domain scenarios and improve the recommendation performance of both domains. Firstly, a network enhancement module is proposed to capture users’ complete preference by applying a graphical convolution and attentional aggregator. This module can reduce the limitations of only considering user preferences in a single domain. Then, a cross-domain infomax objective with noise contrast is presented to ensure that users’ single-domain and cross-domain preferences are correlated closely in sequential interactions. Finally, a joint training strategy is designed to improve the recommendation performances of two domains, which can achieve unbiased cross-domain recommendation results. At last, extensive experiments are conducted on two real-world cross-domain scenarios. The experimental results show that the proposed model in this paper achieves the best recommendation results in comparison with existing models.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.