Zhanylsyn U Urasheva, Gulnar B Kabdrakhmanova, Aigul P Yermagambetova, Aigerim B Utegenova, Nazgul A Seitmaganbetova, Ondassyn M Aliyev, Saulesh S Kurmangaliyeva, Nazym K Kenzhina, Yergen Z Kurmambayev, Alima A Khamidulla
{"title":"关于 Occludin 在中风发病机制中作用的文献计量分析。","authors":"Zhanylsyn U Urasheva, Gulnar B Kabdrakhmanova, Aigul P Yermagambetova, Aigerim B Utegenova, Nazgul A Seitmaganbetova, Ondassyn M Aliyev, Saulesh S Kurmangaliyeva, Nazym K Kenzhina, Yergen Z Kurmambayev, Alima A Khamidulla","doi":"10.1155/2024/2121733","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, there has been a notable surge in research dedicated to unraveling the intricate role of tight junction proteins in blood-brain barrier (BBB) damage associated with ischemic stroke. This bibliometric analysis explores the expansive landscape of occludin research, a key tight junction protein, during the years 2000-2023, shedding light on the global scientific contributions, collaborations, and emerging trends in this critical area of stroke pathogenesis. China and the United States emerge as significant contributors, underscoring their prominence in advancing our understanding of tight junction proteins. Occludin, identified as a linchpin in regulating BBB integrity, proves to be a pivotal player, with implications extending to the diagnosis of hemorrhagic transformation in ischemic stroke. This study identifies occludin as a potential biomarker, offering promise for early diagnosis and paving the way for novel diagnostic strategies. The analysis highlights the necessity for a more comprehensive exploration of tight junction proteins, including occludin and claudin-5, particularly in the context of acute cerebral ischemia. The unique healthcare landscape in Kazakhstan adds urgency to the call for further scientific research in this region, emphasizing the need for tailored investigations to address specific regional challenges. This comprehensive overview not only delineates the current state of occludin research but also signals the direction for future investigations. The identified knowledge gaps and emerging trends provide a roadmap for researchers and policymakers alike, with implications for both scientific discourse and clinical practice. Moving forward, a deeper understanding of tight junction proteins, informed by the insights gleaned from this study, holds the potential to shape targeted therapeutic interventions and diagnostic strategies, ultimately contributing to advancements in global stroke care.</p>","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309812/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bibliometric Analysis of the Role of Occludin in the Pathogenesis of Stroke.\",\"authors\":\"Zhanylsyn U Urasheva, Gulnar B Kabdrakhmanova, Aigul P Yermagambetova, Aigerim B Utegenova, Nazgul A Seitmaganbetova, Ondassyn M Aliyev, Saulesh S Kurmangaliyeva, Nazym K Kenzhina, Yergen Z Kurmambayev, Alima A Khamidulla\",\"doi\":\"10.1155/2024/2121733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decade, there has been a notable surge in research dedicated to unraveling the intricate role of tight junction proteins in blood-brain barrier (BBB) damage associated with ischemic stroke. This bibliometric analysis explores the expansive landscape of occludin research, a key tight junction protein, during the years 2000-2023, shedding light on the global scientific contributions, collaborations, and emerging trends in this critical area of stroke pathogenesis. China and the United States emerge as significant contributors, underscoring their prominence in advancing our understanding of tight junction proteins. Occludin, identified as a linchpin in regulating BBB integrity, proves to be a pivotal player, with implications extending to the diagnosis of hemorrhagic transformation in ischemic stroke. This study identifies occludin as a potential biomarker, offering promise for early diagnosis and paving the way for novel diagnostic strategies. The analysis highlights the necessity for a more comprehensive exploration of tight junction proteins, including occludin and claudin-5, particularly in the context of acute cerebral ischemia. The unique healthcare landscape in Kazakhstan adds urgency to the call for further scientific research in this region, emphasizing the need for tailored investigations to address specific regional challenges. This comprehensive overview not only delineates the current state of occludin research but also signals the direction for future investigations. The identified knowledge gaps and emerging trends provide a roadmap for researchers and policymakers alike, with implications for both scientific discourse and clinical practice. Moving forward, a deeper understanding of tight junction proteins, informed by the insights gleaned from this study, holds the potential to shape targeted therapeutic interventions and diagnostic strategies, ultimately contributing to advancements in global stroke care.</p>\",\"PeriodicalId\":19657,\"journal\":{\"name\":\"Oxidative Medicine and Cellular Longevity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309812/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxidative Medicine and Cellular Longevity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2121733\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidative Medicine and Cellular Longevity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2024/2121733","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Bibliometric Analysis of the Role of Occludin in the Pathogenesis of Stroke.
Over the past decade, there has been a notable surge in research dedicated to unraveling the intricate role of tight junction proteins in blood-brain barrier (BBB) damage associated with ischemic stroke. This bibliometric analysis explores the expansive landscape of occludin research, a key tight junction protein, during the years 2000-2023, shedding light on the global scientific contributions, collaborations, and emerging trends in this critical area of stroke pathogenesis. China and the United States emerge as significant contributors, underscoring their prominence in advancing our understanding of tight junction proteins. Occludin, identified as a linchpin in regulating BBB integrity, proves to be a pivotal player, with implications extending to the diagnosis of hemorrhagic transformation in ischemic stroke. This study identifies occludin as a potential biomarker, offering promise for early diagnosis and paving the way for novel diagnostic strategies. The analysis highlights the necessity for a more comprehensive exploration of tight junction proteins, including occludin and claudin-5, particularly in the context of acute cerebral ischemia. The unique healthcare landscape in Kazakhstan adds urgency to the call for further scientific research in this region, emphasizing the need for tailored investigations to address specific regional challenges. This comprehensive overview not only delineates the current state of occludin research but also signals the direction for future investigations. The identified knowledge gaps and emerging trends provide a roadmap for researchers and policymakers alike, with implications for both scientific discourse and clinical practice. Moving forward, a deeper understanding of tight junction proteins, informed by the insights gleaned from this study, holds the potential to shape targeted therapeutic interventions and diagnostic strategies, ultimately contributing to advancements in global stroke care.
期刊介绍:
Oxidative Medicine and Cellular Longevity is a unique peer-reviewed, Open Access journal that publishes original research and review articles dealing with the cellular and molecular mechanisms of oxidative stress in the nervous system and related organ systems in relation to aging, immune function, vascular biology, metabolism, cellular survival and cellular longevity. Oxidative stress impacts almost all acute and chronic progressive disorders and on a cellular basis is intimately linked to aging, cardiovascular disease, cancer, immune function, metabolism and neurodegeneration. The journal fills a significant void in today’s scientific literature and serves as an international forum for the scientific community worldwide to translate pioneering “bench to bedside” research into clinical strategies.