Teresa Soda , Sharon Negri , Giorgia Scarpellino , Roberto Berra-Romani , Giovambattista De Sarro , Francesco Moccia , Valentina Brunetti
{"title":"自动平面贴片钳法测量人脑血管内皮细胞系的膜电位和静息膜电流。","authors":"Teresa Soda , Sharon Negri , Giorgia Scarpellino , Roberto Berra-Romani , Giovambattista De Sarro , Francesco Moccia , Valentina Brunetti","doi":"10.1016/j.jneumeth.2024.110248","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The conventional “whole-cell patch-clamp” recording technique is widely used to measure the resting membrane potential (V<sub>M</sub>) and to dissect the underlying membrane ionic conductances in isolated vascular endothelial cells.</p></div><div><h3>New method</h3><p>Herein, we assessed whether the automated patch-clamp (APC) technology, which replaces the traditional patch-pipette with a planar substrate to permit researchers lacking formal training in electrophysiology to generate large amounts of data in a relatively short time, can be used to characterize the bioelectrical activity of vascular endothelial cells. We assessed whether the Port-a-Patch planar patch-clamp system, which is regarded as the smallest electrophysiological rig available on the market, can be used to measure the V<sub>M</sub> and resting membrane currents in the human cerebrovascular endothelial cell line, hCMEC/D3.</p></div><div><h3>Comparison with existing methods</h3><p>We demonstrated that the Port-a-Patch planar patch-clamp system provides the same values of the resting V<sub>M</sub> as those provided by the conventional patch-clamp technique. Furthermore, the APC technology provides preliminary data demonstrating that the resting V<sub>M</sub> of hCMEC/D3 cells is primarily contributed by Cl<sup>-</sup> and Na<sup>+</sup>, as demonstrated with the patch-clamp technique for many other endothelial cell types.</p></div><div><h3>Conclusions</h3><p>The Port-a-Patch planar patch-clamp system can be successfully used to measure the resting V<sub>M</sub> and the underlying membrane ionic conductances in hCMEC/D3 cells. We envisage that this easy-to-use APC system could also be extremely useful for the investigation of the membrane currents that can be activated by chemical, thermal, optical, and mechanical stimuli in this cell line as well as in other types of isolated vascular endothelial cells.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"410 ","pages":"Article 110248"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automated planar patch-clamp approach to measure the membrane potential and resting membrane currents in a human cerebrovascular endothelial cell line\",\"authors\":\"Teresa Soda , Sharon Negri , Giorgia Scarpellino , Roberto Berra-Romani , Giovambattista De Sarro , Francesco Moccia , Valentina Brunetti\",\"doi\":\"10.1016/j.jneumeth.2024.110248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The conventional “whole-cell patch-clamp” recording technique is widely used to measure the resting membrane potential (V<sub>M</sub>) and to dissect the underlying membrane ionic conductances in isolated vascular endothelial cells.</p></div><div><h3>New method</h3><p>Herein, we assessed whether the automated patch-clamp (APC) technology, which replaces the traditional patch-pipette with a planar substrate to permit researchers lacking formal training in electrophysiology to generate large amounts of data in a relatively short time, can be used to characterize the bioelectrical activity of vascular endothelial cells. We assessed whether the Port-a-Patch planar patch-clamp system, which is regarded as the smallest electrophysiological rig available on the market, can be used to measure the V<sub>M</sub> and resting membrane currents in the human cerebrovascular endothelial cell line, hCMEC/D3.</p></div><div><h3>Comparison with existing methods</h3><p>We demonstrated that the Port-a-Patch planar patch-clamp system provides the same values of the resting V<sub>M</sub> as those provided by the conventional patch-clamp technique. Furthermore, the APC technology provides preliminary data demonstrating that the resting V<sub>M</sub> of hCMEC/D3 cells is primarily contributed by Cl<sup>-</sup> and Na<sup>+</sup>, as demonstrated with the patch-clamp technique for many other endothelial cell types.</p></div><div><h3>Conclusions</h3><p>The Port-a-Patch planar patch-clamp system can be successfully used to measure the resting V<sub>M</sub> and the underlying membrane ionic conductances in hCMEC/D3 cells. We envisage that this easy-to-use APC system could also be extremely useful for the investigation of the membrane currents that can be activated by chemical, thermal, optical, and mechanical stimuli in this cell line as well as in other types of isolated vascular endothelial cells.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"410 \",\"pages\":\"Article 110248\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024001936\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024001936","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
背景:传统的 "全细胞膜片钳 "记录技术被广泛用于测量静息膜电位(VM)和剖析离体血管内皮细胞的潜在膜离子传导:在这里,我们评估了自动贴片钳(APC)技术是否可用于表征血管内皮细胞的生物电活动,该技术用平面基底取代了传统的贴片移液管,允许缺乏正规电生理学培训的研究人员在相对较短的时间内生成大量数据。我们评估了 Port-a-Patch 平面贴片钳系统(被认为是市场上最小的电生理设备)能否用于测量人脑血管内皮细胞系 hCMEC/D3 的 VM 和静息膜电流:我们证明,Port-a-Patch 平面贴片钳系统提供的静息 VM 值与传统贴片钳技术提供的值相同。此外,APC 技术还提供了初步数据,证明 hCMEC/D3 细胞的静息 VM 主要来自 Cl- 和 Na+,这一点已在许多其他类型内皮细胞的贴片钳技术中得到证实:结论:Port-a-Patch 平面膜片钳系统可成功用于测量 hCMEC/D3 细胞的静息 VM 和基本膜离子电导。我们认为,这种易于使用的 APC 系统对于研究该细胞系以及其他类型的离体血管内皮细胞在化学、热和机械刺激下激活的膜电流也非常有用。
An automated planar patch-clamp approach to measure the membrane potential and resting membrane currents in a human cerebrovascular endothelial cell line
Background
The conventional “whole-cell patch-clamp” recording technique is widely used to measure the resting membrane potential (VM) and to dissect the underlying membrane ionic conductances in isolated vascular endothelial cells.
New method
Herein, we assessed whether the automated patch-clamp (APC) technology, which replaces the traditional patch-pipette with a planar substrate to permit researchers lacking formal training in electrophysiology to generate large amounts of data in a relatively short time, can be used to characterize the bioelectrical activity of vascular endothelial cells. We assessed whether the Port-a-Patch planar patch-clamp system, which is regarded as the smallest electrophysiological rig available on the market, can be used to measure the VM and resting membrane currents in the human cerebrovascular endothelial cell line, hCMEC/D3.
Comparison with existing methods
We demonstrated that the Port-a-Patch planar patch-clamp system provides the same values of the resting VM as those provided by the conventional patch-clamp technique. Furthermore, the APC technology provides preliminary data demonstrating that the resting VM of hCMEC/D3 cells is primarily contributed by Cl- and Na+, as demonstrated with the patch-clamp technique for many other endothelial cell types.
Conclusions
The Port-a-Patch planar patch-clamp system can be successfully used to measure the resting VM and the underlying membrane ionic conductances in hCMEC/D3 cells. We envisage that this easy-to-use APC system could also be extremely useful for the investigation of the membrane currents that can be activated by chemical, thermal, optical, and mechanical stimuli in this cell line as well as in other types of isolated vascular endothelial cells.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.