{"title":"食源性病原体单核细胞增生李斯特菌的代谢重编程是抵御酸胁迫的关键。","authors":"Jialun Wu, Chuhan Wang, Conor O'Byrne","doi":"10.1093/femsle/fnae060","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to sense and respond effectively to acidic stress is important for microorganisms to survive and proliferate in fluctuating environments. As specific metabolic activities can serve to buffer the cytoplasmic pH, microorganisms rewire their metabolism to favour these reactions and thereby mitigate acid stress. The orally acquired pathogen Listeria monocytogenes exploits alternative metabolic activities to overcome the acidic stress encountered in the human stomach or food products. In this minireview, we discuss the metabolic processes in L. monocytogenes that mitigate acid stress, with an emphasis on the proton-depleting reactions, including glutamate decarboxylation, arginine/agmatine deimination, and fermentative acetoin production. We also summarize the recent findings on regulatory mechanisms that control the expression of genes that are responsible for these metabolic activities, including the general stress response regulator SigB, arginine repressor ArgR, and the recently discovered RofA-like transcriptional regulatory GadR. We further discuss the importance of this metabolic reprogramming in the context of food products and within the host. Finally, we highlight some outstanding challenges in the field, including an understanding of acid-sensing mechanisms, the role of intraspecies heterogeneity in acid resistance, and how a fundamental understanding of acid stress response can be exploited for food formulation to improve food safety and reduce food waste.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334721/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolic reprogramming in the food-borne pathogen Listeria monocytogenes as a critical defence against acid stress.\",\"authors\":\"Jialun Wu, Chuhan Wang, Conor O'Byrne\",\"doi\":\"10.1093/femsle/fnae060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to sense and respond effectively to acidic stress is important for microorganisms to survive and proliferate in fluctuating environments. As specific metabolic activities can serve to buffer the cytoplasmic pH, microorganisms rewire their metabolism to favour these reactions and thereby mitigate acid stress. The orally acquired pathogen Listeria monocytogenes exploits alternative metabolic activities to overcome the acidic stress encountered in the human stomach or food products. In this minireview, we discuss the metabolic processes in L. monocytogenes that mitigate acid stress, with an emphasis on the proton-depleting reactions, including glutamate decarboxylation, arginine/agmatine deimination, and fermentative acetoin production. We also summarize the recent findings on regulatory mechanisms that control the expression of genes that are responsible for these metabolic activities, including the general stress response regulator SigB, arginine repressor ArgR, and the recently discovered RofA-like transcriptional regulatory GadR. We further discuss the importance of this metabolic reprogramming in the context of food products and within the host. Finally, we highlight some outstanding challenges in the field, including an understanding of acid-sensing mechanisms, the role of intraspecies heterogeneity in acid resistance, and how a fundamental understanding of acid stress response can be exploited for food formulation to improve food safety and reduce food waste.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae060\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae060","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Metabolic reprogramming in the food-borne pathogen Listeria monocytogenes as a critical defence against acid stress.
The ability to sense and respond effectively to acidic stress is important for microorganisms to survive and proliferate in fluctuating environments. As specific metabolic activities can serve to buffer the cytoplasmic pH, microorganisms rewire their metabolism to favour these reactions and thereby mitigate acid stress. The orally acquired pathogen Listeria monocytogenes exploits alternative metabolic activities to overcome the acidic stress encountered in the human stomach or food products. In this minireview, we discuss the metabolic processes in L. monocytogenes that mitigate acid stress, with an emphasis on the proton-depleting reactions, including glutamate decarboxylation, arginine/agmatine deimination, and fermentative acetoin production. We also summarize the recent findings on regulatory mechanisms that control the expression of genes that are responsible for these metabolic activities, including the general stress response regulator SigB, arginine repressor ArgR, and the recently discovered RofA-like transcriptional regulatory GadR. We further discuss the importance of this metabolic reprogramming in the context of food products and within the host. Finally, we highlight some outstanding challenges in the field, including an understanding of acid-sensing mechanisms, the role of intraspecies heterogeneity in acid resistance, and how a fundamental understanding of acid stress response can be exploited for food formulation to improve food safety and reduce food waste.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.