单发纤维瘤分子生物学研究进展及对临床应用的潜在影响。

IF 7.7 2区 医学 Q1 ONCOLOGY
Cancer and Metastasis Reviews Pub Date : 2024-12-01 Epub Date: 2024-08-09 DOI:10.1007/s10555-024-10204-8
Chongmin Ren, Gina D'Amato, Francis J Hornicek, Hao Tao, Zhenfeng Duan
{"title":"单发纤维瘤分子生物学研究进展及对临床应用的潜在影响。","authors":"Chongmin Ren, Gina D'Amato, Francis J Hornicek, Hao Tao, Zhenfeng Duan","doi":"10.1007/s10555-024-10204-8","DOIUrl":null,"url":null,"abstract":"<p><p>Solitary fibrous tumor (SFT) is a rare fibroblastic mesenchymal neoplasm. The current classification has merged SFT and hemangiopericytoma (HPC) into the same tumor entity, while the risk stratification models have been developed to compensate for clinical prediction. Typically, slow-growing and asymptomatic, SFT can occur in various anatomical sites, most commonly in the pleura. Histologically, SFT consists of spindle to oval cells with minimal patterned growth, surrounded by stromal collagen and unique vascular patterns. Molecularly, SFT is defined by the fusion of NGFI-A-binding protein 2 (NAB2) and signal transducer and activator of transcription 6 (STAT6) genes as NAB2-STAT6. This fusion transforms NAB2 into a transcriptional activator, activating early growth response 1 (EGR1) and contributing to SFT pathogenesis and development. There are several fusion variants of NAB2-STAT6 in tumor tissues, with the most frequent ones being NAB2ex4-STAT6ex2 and NAB2ex6-STAT6ex16/ex17. Diagnostic methods play a crucial role in SFT clinical practice and basic research, including RT-PCR, next-generation sequencing (NGS), FISH, immunohistochemistry (IHC), and Western blot analysis, each with distinct capabilities and limitations. Traditional treatment strategies of SFT encompass surgical resection, radiation therapy, and chemotherapy, while emerging management regimes include antiangiogenic agents, immunotherapy, RNA-targeting technologies, and potential targeted drugs. This review provides an update on SFT's clinical and molecular aspects, diagnostic methods, and potential therapies.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"1337-1352"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554739/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in the molecular biology of the solitary fibrous tumor and potential impact on clinical applications.\",\"authors\":\"Chongmin Ren, Gina D'Amato, Francis J Hornicek, Hao Tao, Zhenfeng Duan\",\"doi\":\"10.1007/s10555-024-10204-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solitary fibrous tumor (SFT) is a rare fibroblastic mesenchymal neoplasm. The current classification has merged SFT and hemangiopericytoma (HPC) into the same tumor entity, while the risk stratification models have been developed to compensate for clinical prediction. Typically, slow-growing and asymptomatic, SFT can occur in various anatomical sites, most commonly in the pleura. Histologically, SFT consists of spindle to oval cells with minimal patterned growth, surrounded by stromal collagen and unique vascular patterns. Molecularly, SFT is defined by the fusion of NGFI-A-binding protein 2 (NAB2) and signal transducer and activator of transcription 6 (STAT6) genes as NAB2-STAT6. This fusion transforms NAB2 into a transcriptional activator, activating early growth response 1 (EGR1) and contributing to SFT pathogenesis and development. There are several fusion variants of NAB2-STAT6 in tumor tissues, with the most frequent ones being NAB2ex4-STAT6ex2 and NAB2ex6-STAT6ex16/ex17. Diagnostic methods play a crucial role in SFT clinical practice and basic research, including RT-PCR, next-generation sequencing (NGS), FISH, immunohistochemistry (IHC), and Western blot analysis, each with distinct capabilities and limitations. Traditional treatment strategies of SFT encompass surgical resection, radiation therapy, and chemotherapy, while emerging management regimes include antiangiogenic agents, immunotherapy, RNA-targeting technologies, and potential targeted drugs. This review provides an update on SFT's clinical and molecular aspects, diagnostic methods, and potential therapies.</p>\",\"PeriodicalId\":9489,\"journal\":{\"name\":\"Cancer and Metastasis Reviews\",\"volume\":\" \",\"pages\":\"1337-1352\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554739/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer and Metastasis Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10555-024-10204-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer and Metastasis Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10555-024-10204-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

孤立性纤维瘤(SFT)是一种罕见的成纤维间质肿瘤。目前的分类方法已将 SFT 和血管扩张性细胞瘤(HPC)合并为同一肿瘤实体,而风险分层模型的开发则是为了弥补临床预测的不足。SFT通常生长缓慢且无症状,可发生在不同的解剖部位,最常见于胸膜。从组织学角度看,SFT 由纺锤形至椭圆形细胞组成,具有最小的生长模式,周围有基质胶原和独特的血管模式。分子上,SFT 是由 NGFI-A 结合蛋白 2(NAB2)和信号转导及激活转录 6(STAT6)基因融合而成,即 NAB2-STAT6。这种融合将 NAB2 转化为转录激活因子,激活早期生长应答 1(EGR1),并促进 SFT 的发病和发育。肿瘤组织中存在多种 NAB2-STAT6 融合变体,其中最常见的是 NAB2ex4-STAT6ex2 和 NAB2ex6-STAT6ex16/ex17。诊断方法在 SFT 临床实践和基础研究中发挥着重要作用,包括 RT-PCR、新一代测序(NGS)、FISH、免疫组织化学(IHC)和 Western 印迹分析,每种方法都有其独特的功能和局限性。SFT 的传统治疗策略包括手术切除、放疗和化疗,而新兴的治疗方案包括抗血管生成药物、免疫疗法、RNA 靶向技术和潜在的靶向药物。本综述提供了有关 SFT 临床和分子方面、诊断方法和潜在疗法的最新信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advances in the molecular biology of the solitary fibrous tumor and potential impact on clinical applications.

Advances in the molecular biology of the solitary fibrous tumor and potential impact on clinical applications.

Solitary fibrous tumor (SFT) is a rare fibroblastic mesenchymal neoplasm. The current classification has merged SFT and hemangiopericytoma (HPC) into the same tumor entity, while the risk stratification models have been developed to compensate for clinical prediction. Typically, slow-growing and asymptomatic, SFT can occur in various anatomical sites, most commonly in the pleura. Histologically, SFT consists of spindle to oval cells with minimal patterned growth, surrounded by stromal collagen and unique vascular patterns. Molecularly, SFT is defined by the fusion of NGFI-A-binding protein 2 (NAB2) and signal transducer and activator of transcription 6 (STAT6) genes as NAB2-STAT6. This fusion transforms NAB2 into a transcriptional activator, activating early growth response 1 (EGR1) and contributing to SFT pathogenesis and development. There are several fusion variants of NAB2-STAT6 in tumor tissues, with the most frequent ones being NAB2ex4-STAT6ex2 and NAB2ex6-STAT6ex16/ex17. Diagnostic methods play a crucial role in SFT clinical practice and basic research, including RT-PCR, next-generation sequencing (NGS), FISH, immunohistochemistry (IHC), and Western blot analysis, each with distinct capabilities and limitations. Traditional treatment strategies of SFT encompass surgical resection, radiation therapy, and chemotherapy, while emerging management regimes include antiangiogenic agents, immunotherapy, RNA-targeting technologies, and potential targeted drugs. This review provides an update on SFT's clinical and molecular aspects, diagnostic methods, and potential therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.00
自引率
0.00%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Contemporary biomedical research is on the threshold of an era in which physiological and pathological processes can be analyzed in increasingly precise and mechanistic terms.The transformation of biology from a largely descriptive, phenomenological discipline to one in which the regulatory principles can be understood and manipulated with predictability brings a new dimension to the study of cancer and the search for effective therapeutic modalities for this disease. Cancer and Metastasis Reviews provides a forum for critical review and discussion of these challenging developments. A major function of the journal is to review some of the more important and interesting recent developments in the biology and treatment of malignant disease, as well as to highlight new and promising directions, be they technological or conceptual. Contributors are encouraged to review their personal work and be speculative.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信