弓状多巴胺能/GABA 能神经元投射到下丘脑和正中突起。

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Journal of neurophysiology Pub Date : 2024-09-01 Epub Date: 2024-08-07 DOI:10.1152/jn.00086.2024
Somya Mittal, Benjamin R Arenkiel, Ariel M Lyons-Warren
{"title":"弓状多巴胺能/GABA 能神经元投射到下丘脑和正中突起。","authors":"Somya Mittal, Benjamin R Arenkiel, Ariel M Lyons-Warren","doi":"10.1152/jn.00086.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cotransmission, meaning the release of multiple neurotransmitters from one synapse, allows for increased diversity of signaling in the brain. Dopamine (DA) and γ-aminobutyric acid (GABA) are known to coexpress in many regions such as the olfactory bulb and the ventral tegmental area. Tuberoinfundibular dopaminergic neurons (TIDA) in the arcuate nucleus of the hypothalamus (Arc) project to the median eminence (ME) and regulate prolactin release from the pituitary, and prior work suggests dopaminergic Arc neurons also cotransmit GABA. However, the extent of cotransmission, and the projection patterns of these neurons have not been fully revealed. Here, we used a genetic intersectional reporter expression approach to selectively label cells that express both tyrosine hydroxylase (TH) and vesicular GABA transporter (VGAT). Through this approach, we identified cells capable of both DA and GABA cotransmission in the Arc, periventricular (Pe), paraventricular (Pa), ventromedial, and the dorsolateral hypothalamic nuclei, in addition to a novel population in the caudate putamen. The highest density of labeled cells was in the Arc, 6.68% of DAPI-labeled cells at Bregma -2.06 mm, and in the Pe, 2.83% of DAPI-labeled cells at Bregma -1.94 mm. Next, we evaluated the projections of these DA/GABA cells by injecting an mCherry virus that fluoresces in DA/GABA cells. We observed a cotransmitting DA/GABA population, with projections within the Arc, and to the Pa and ME. These data suggest DA/GABA Arc neurons are involved in prolactin release as a subset of TIDA neurons. Further investigation will elucidate the interactions of dopamine and GABA in the hypothalamus.<b>NEW & NOTEWORTHY</b> Cotransmitting dopaminergic (DA) and γ-aminobutyric acid (GABA)ergic (DA/GABA) neurons contribute to the complexity of neural circuits. Using a new genetic technique, we characterized the locations, density, and projections of hypothalamic DA/GABA neurons. DA/GABA cells are mostly in the arcuate nucleus (Arc), from which they project locally within the arcuate, to the median eminence (ME), and to the paraventricular (Pa) nucleus. There is also a small and previously unreported group of DA/GABA cells in the caudate putamen.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427037/pdf/","citationCount":"0","resultStr":"{\"title\":\"Arcuate dopaminergic/GABAergic neurons project within the hypothalamus and to the median eminence.\",\"authors\":\"Somya Mittal, Benjamin R Arenkiel, Ariel M Lyons-Warren\",\"doi\":\"10.1152/jn.00086.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cotransmission, meaning the release of multiple neurotransmitters from one synapse, allows for increased diversity of signaling in the brain. Dopamine (DA) and γ-aminobutyric acid (GABA) are known to coexpress in many regions such as the olfactory bulb and the ventral tegmental area. Tuberoinfundibular dopaminergic neurons (TIDA) in the arcuate nucleus of the hypothalamus (Arc) project to the median eminence (ME) and regulate prolactin release from the pituitary, and prior work suggests dopaminergic Arc neurons also cotransmit GABA. However, the extent of cotransmission, and the projection patterns of these neurons have not been fully revealed. Here, we used a genetic intersectional reporter expression approach to selectively label cells that express both tyrosine hydroxylase (TH) and vesicular GABA transporter (VGAT). Through this approach, we identified cells capable of both DA and GABA cotransmission in the Arc, periventricular (Pe), paraventricular (Pa), ventromedial, and the dorsolateral hypothalamic nuclei, in addition to a novel population in the caudate putamen. The highest density of labeled cells was in the Arc, 6.68% of DAPI-labeled cells at Bregma -2.06 mm, and in the Pe, 2.83% of DAPI-labeled cells at Bregma -1.94 mm. Next, we evaluated the projections of these DA/GABA cells by injecting an mCherry virus that fluoresces in DA/GABA cells. We observed a cotransmitting DA/GABA population, with projections within the Arc, and to the Pa and ME. These data suggest DA/GABA Arc neurons are involved in prolactin release as a subset of TIDA neurons. Further investigation will elucidate the interactions of dopamine and GABA in the hypothalamus.<b>NEW & NOTEWORTHY</b> Cotransmitting dopaminergic (DA) and γ-aminobutyric acid (GABA)ergic (DA/GABA) neurons contribute to the complexity of neural circuits. Using a new genetic technique, we characterized the locations, density, and projections of hypothalamic DA/GABA neurons. DA/GABA cells are mostly in the arcuate nucleus (Arc), from which they project locally within the arcuate, to the median eminence (ME), and to the paraventricular (Pa) nucleus. There is also a small and previously unreported group of DA/GABA cells in the caudate putamen.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427037/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00086.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00086.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

共传递(即从一个突触释放多种神经递质)可以增加大脑信号传递的多样性。已知多巴胺(DA)和γ-氨基丁酸(GABA)在嗅球和腹侧被盖区等许多区域共同表达。下丘脑弓状核(Arc)中的多巴胺能神经元(TIDA)可投射到正中突起(ME)并调节垂体催乳素的释放,先前的研究表明多巴胺能 Arc 神经元也可共同传递 GABA。然而,这些神经元的共传递程度和投射模式尚未完全揭示。在这里,我们使用基因交叉报告表达方法,选择性标记同时表达酪氨酸羟化酶(TH)和囊泡 GABA 转运体(Vgat)的细胞。通过这种方法,我们在弧核、室周核(Pe)、室旁核(Pa)、腹侧核和下丘脑背外侧核中发现了能够同时进行多巴胺(DA)和GABA共传递的细胞,此外还在尾状核丘脑中发现了一个新的细胞群。标记细胞密度最高的是弧核,在-2.06 mm Bregma处占DAPI标记细胞的6.68%;在Pe核,在-1.94 mm Bregma处占DAPI标记细胞的2.83%。接下来,我们通过注射能在 DA/GABA 细胞中发出荧光的 mCherry 病毒来评估这些 DA/GABA 细胞的投射。我们观察到一个 DA/GABA 共传递群体,其投射在弧内,并投射到 Pa 和 ME。这些数据表明,DA/GABA Arc 神经元作为 TIDA 神经元的一个亚群参与催乳素的释放。进一步的研究将阐明多巴胺和 GABA 在下丘脑中的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arcuate dopaminergic/GABAergic neurons project within the hypothalamus and to the median eminence.

Cotransmission, meaning the release of multiple neurotransmitters from one synapse, allows for increased diversity of signaling in the brain. Dopamine (DA) and γ-aminobutyric acid (GABA) are known to coexpress in many regions such as the olfactory bulb and the ventral tegmental area. Tuberoinfundibular dopaminergic neurons (TIDA) in the arcuate nucleus of the hypothalamus (Arc) project to the median eminence (ME) and regulate prolactin release from the pituitary, and prior work suggests dopaminergic Arc neurons also cotransmit GABA. However, the extent of cotransmission, and the projection patterns of these neurons have not been fully revealed. Here, we used a genetic intersectional reporter expression approach to selectively label cells that express both tyrosine hydroxylase (TH) and vesicular GABA transporter (VGAT). Through this approach, we identified cells capable of both DA and GABA cotransmission in the Arc, periventricular (Pe), paraventricular (Pa), ventromedial, and the dorsolateral hypothalamic nuclei, in addition to a novel population in the caudate putamen. The highest density of labeled cells was in the Arc, 6.68% of DAPI-labeled cells at Bregma -2.06 mm, and in the Pe, 2.83% of DAPI-labeled cells at Bregma -1.94 mm. Next, we evaluated the projections of these DA/GABA cells by injecting an mCherry virus that fluoresces in DA/GABA cells. We observed a cotransmitting DA/GABA population, with projections within the Arc, and to the Pa and ME. These data suggest DA/GABA Arc neurons are involved in prolactin release as a subset of TIDA neurons. Further investigation will elucidate the interactions of dopamine and GABA in the hypothalamus.NEW & NOTEWORTHY Cotransmitting dopaminergic (DA) and γ-aminobutyric acid (GABA)ergic (DA/GABA) neurons contribute to the complexity of neural circuits. Using a new genetic technique, we characterized the locations, density, and projections of hypothalamic DA/GABA neurons. DA/GABA cells are mostly in the arcuate nucleus (Arc), from which they project locally within the arcuate, to the median eminence (ME), and to the paraventricular (Pa) nucleus. There is also a small and previously unreported group of DA/GABA cells in the caudate putamen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信