Zeinab Mazloumi, Ali Rafat, Khadijeh Dizaji Asl, Mohammad Karimipour, Dariush Shanehbandi, Mehdi Talebi, Majid Montazer, Ali Akbar Movassaghpour, Alireza Dehnad, Raheleh Farahzadi, Hojjatollah Nozad Charoudeh
{"title":"抑制端粒酶和线粒体可促进三阴性乳腺癌细胞株的凋亡以及 TET2 和 ANMT3a 的表达。","authors":"Zeinab Mazloumi, Ali Rafat, Khadijeh Dizaji Asl, Mohammad Karimipour, Dariush Shanehbandi, Mehdi Talebi, Majid Montazer, Ali Akbar Movassaghpour, Alireza Dehnad, Raheleh Farahzadi, Hojjatollah Nozad Charoudeh","doi":"10.34172/bi.2023.27640","DOIUrl":null,"url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>High metastasis, resistance to common treatments, and high mortality rate, has made triple-negative breast cancer (TNBC) to be the most invasive type of breast cancer. High telomerase activity and mitochondrial biogenesis are involved in breast cancer tumorigenesis. The catalytic subunit of telomerase, telomerase reverse transcriptase (hTERT), plays a role in telomere lengthening and extra-biological functions such as gene expression, mitochondria function, and apoptosis. In this study, it has been aimed to evaluate intrinsic-, extrinsic-apoptosis and DNMT3a and TET2 expression following the inhibition of telomerase and mitochondria respiration in TNBC cell lines.</p><p><strong>Methods: </strong>TNBC cells were treated with IC<sub>50</sub> levels of BIBR1532, tigecycline, and also their combination. Then, telomere length, and DNMT3a, TET2, and hTERT expression were evaluated. Finally, apoptosis rate, apoptosis-related proteins, and genes were analyzed.</p><p><strong>Results: </strong>The present results showed that IC<sub>50</sub> level of telomerase and inhibition of mitochondria respiration induced apoptosis but did not leave any significant effect on telomere length. The results also indicated that telomerase inhibition induced extrinsic-apoptosis in MDA-MB-231 and caused intrinsic- apoptosis in MDA-MB-468 cells. Furthermore, it was found that the expression of p53 decreased and was ineffective in cell apoptosis. The expressions of DNMT3a and TET2 increased in cells. In addition, combination treatment was better than BIBR1532 and tigecycline alone.</p><p><strong>Conclusion: </strong>The inhibition of telomerase and mitochondria respiration caused intrinsic- and extrinsic- apoptosis and increased DNMT3a and TET2 expression and it could be utilized in breast cancer treatment.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"14 4","pages":"27640"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298022/pdf/","citationCount":"0","resultStr":"{\"title\":\"Telomerase and mitochondria inhibition promote apoptosis and TET2 and ANMT3a expression in triple negative breast cancer cell lines.\",\"authors\":\"Zeinab Mazloumi, Ali Rafat, Khadijeh Dizaji Asl, Mohammad Karimipour, Dariush Shanehbandi, Mehdi Talebi, Majid Montazer, Ali Akbar Movassaghpour, Alireza Dehnad, Raheleh Farahzadi, Hojjatollah Nozad Charoudeh\",\"doi\":\"10.34172/bi.2023.27640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p></p><p><strong>Introduction: </strong>High metastasis, resistance to common treatments, and high mortality rate, has made triple-negative breast cancer (TNBC) to be the most invasive type of breast cancer. High telomerase activity and mitochondrial biogenesis are involved in breast cancer tumorigenesis. The catalytic subunit of telomerase, telomerase reverse transcriptase (hTERT), plays a role in telomere lengthening and extra-biological functions such as gene expression, mitochondria function, and apoptosis. In this study, it has been aimed to evaluate intrinsic-, extrinsic-apoptosis and DNMT3a and TET2 expression following the inhibition of telomerase and mitochondria respiration in TNBC cell lines.</p><p><strong>Methods: </strong>TNBC cells were treated with IC<sub>50</sub> levels of BIBR1532, tigecycline, and also their combination. Then, telomere length, and DNMT3a, TET2, and hTERT expression were evaluated. Finally, apoptosis rate, apoptosis-related proteins, and genes were analyzed.</p><p><strong>Results: </strong>The present results showed that IC<sub>50</sub> level of telomerase and inhibition of mitochondria respiration induced apoptosis but did not leave any significant effect on telomere length. The results also indicated that telomerase inhibition induced extrinsic-apoptosis in MDA-MB-231 and caused intrinsic- apoptosis in MDA-MB-468 cells. Furthermore, it was found that the expression of p53 decreased and was ineffective in cell apoptosis. The expressions of DNMT3a and TET2 increased in cells. In addition, combination treatment was better than BIBR1532 and tigecycline alone.</p><p><strong>Conclusion: </strong>The inhibition of telomerase and mitochondria respiration caused intrinsic- and extrinsic- apoptosis and increased DNMT3a and TET2 expression and it could be utilized in breast cancer treatment.</p>\",\"PeriodicalId\":48614,\"journal\":{\"name\":\"Bioimpacts\",\"volume\":\"14 4\",\"pages\":\"27640\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298022/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimpacts\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.34172/bi.2023.27640\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.2023.27640","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Telomerase and mitochondria inhibition promote apoptosis and TET2 and ANMT3a expression in triple negative breast cancer cell lines.
Introduction: High metastasis, resistance to common treatments, and high mortality rate, has made triple-negative breast cancer (TNBC) to be the most invasive type of breast cancer. High telomerase activity and mitochondrial biogenesis are involved in breast cancer tumorigenesis. The catalytic subunit of telomerase, telomerase reverse transcriptase (hTERT), plays a role in telomere lengthening and extra-biological functions such as gene expression, mitochondria function, and apoptosis. In this study, it has been aimed to evaluate intrinsic-, extrinsic-apoptosis and DNMT3a and TET2 expression following the inhibition of telomerase and mitochondria respiration in TNBC cell lines.
Methods: TNBC cells were treated with IC50 levels of BIBR1532, tigecycline, and also their combination. Then, telomere length, and DNMT3a, TET2, and hTERT expression were evaluated. Finally, apoptosis rate, apoptosis-related proteins, and genes were analyzed.
Results: The present results showed that IC50 level of telomerase and inhibition of mitochondria respiration induced apoptosis but did not leave any significant effect on telomere length. The results also indicated that telomerase inhibition induced extrinsic-apoptosis in MDA-MB-231 and caused intrinsic- apoptosis in MDA-MB-468 cells. Furthermore, it was found that the expression of p53 decreased and was ineffective in cell apoptosis. The expressions of DNMT3a and TET2 increased in cells. In addition, combination treatment was better than BIBR1532 and tigecycline alone.
Conclusion: The inhibition of telomerase and mitochondria respiration caused intrinsic- and extrinsic- apoptosis and increased DNMT3a and TET2 expression and it could be utilized in breast cancer treatment.
BioimpactsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍:
BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.