精神分裂症患者灰质萎缩、神经认知和社会认知功能障碍的脑网络定位。

IF 9.6 1区 医学 Q1 NEUROSCIENCES
Biological Psychiatry Pub Date : 2025-01-15 Epub Date: 2024-08-03 DOI:10.1016/j.biopsych.2024.07.021
Yan Cheng, Huanhuan Cai, Siyu Liu, Yang Yang, Shan Pan, Yongqi Zhang, Fan Mo, Yongqiang Yu, Jiajia Zhu
{"title":"精神分裂症患者灰质萎缩、神经认知和社会认知功能障碍的脑网络定位。","authors":"Yan Cheng, Huanhuan Cai, Siyu Liu, Yang Yang, Shan Pan, Yongqi Zhang, Fan Mo, Yongqiang Yu, Jiajia Zhu","doi":"10.1016/j.biopsych.2024.07.021","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Numerous studies have established the presence of gray matter atrophy and brain activation abnormalities during neurocognitive and social cognitive tasks in schizophrenia. Despite a growing consensus that diseases localize better to distributed brain networks than individual anatomical regions, relatively few studies have examined brain network localization of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia.</p><p><strong>Methods: </strong>To address this gap, we initially identified brain locations of structural and functional abnormalities in schizophrenia from 301 published neuroimaging studies with 8712 individuals with schizophrenia and 9275 healthy control participants. By applying novel functional connectivity network mapping to large-scale resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 brain abnormality networks of schizophrenia.</p><p><strong>Results: </strong>The gray matter atrophy network of schizophrenia comprised a broadly distributed set of brain areas predominantly implicating the ventral attention, somatomotor, and default networks. The neurocognitive dysfunction network was also composed of widespread brain areas primarily involving the frontoparietal and default networks. By contrast, the social cognitive dysfunction network consisted of circumscribed brain regions mainly implicating the default, subcortical, and visual networks.</p><p><strong>Conclusions: </strong>Our findings suggest shared and unique brain network substrates of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia, which may not only refine the understanding of disease neuropathology from a network perspective but may also contribute to more targeted and effective treatments for impairments in different cognitive domains in schizophrenia.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":"148-156"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain Network Localization of Gray Matter Atrophy and Neurocognitive and Social Cognitive Dysfunction in Schizophrenia.\",\"authors\":\"Yan Cheng, Huanhuan Cai, Siyu Liu, Yang Yang, Shan Pan, Yongqi Zhang, Fan Mo, Yongqiang Yu, Jiajia Zhu\",\"doi\":\"10.1016/j.biopsych.2024.07.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Numerous studies have established the presence of gray matter atrophy and brain activation abnormalities during neurocognitive and social cognitive tasks in schizophrenia. Despite a growing consensus that diseases localize better to distributed brain networks than individual anatomical regions, relatively few studies have examined brain network localization of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia.</p><p><strong>Methods: </strong>To address this gap, we initially identified brain locations of structural and functional abnormalities in schizophrenia from 301 published neuroimaging studies with 8712 individuals with schizophrenia and 9275 healthy control participants. By applying novel functional connectivity network mapping to large-scale resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 brain abnormality networks of schizophrenia.</p><p><strong>Results: </strong>The gray matter atrophy network of schizophrenia comprised a broadly distributed set of brain areas predominantly implicating the ventral attention, somatomotor, and default networks. The neurocognitive dysfunction network was also composed of widespread brain areas primarily involving the frontoparietal and default networks. By contrast, the social cognitive dysfunction network consisted of circumscribed brain regions mainly implicating the default, subcortical, and visual networks.</p><p><strong>Conclusions: </strong>Our findings suggest shared and unique brain network substrates of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia, which may not only refine the understanding of disease neuropathology from a network perspective but may also contribute to more targeted and effective treatments for impairments in different cognitive domains in schizophrenia.</p>\",\"PeriodicalId\":8918,\"journal\":{\"name\":\"Biological Psychiatry\",\"volume\":\" \",\"pages\":\"148-156\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopsych.2024.07.021\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.07.021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

研究背景大量研究证实,精神分裂症患者在神经认知和社会认知任务中存在灰质萎缩和脑激活异常。尽管越来越多的人认为,与单个解剖区域相比,疾病在分布式脑网络中的定位效果更好,但目前仍缺乏研究精神分裂症患者灰质萎缩、神经认知和社会认知功能障碍的脑网络定位的文献:为了填补这一空白,我们从已发表的301项神经影像学研究中初步确定了精神分裂症患者大脑结构和功能异常的位置,研究对象包括8712名精神分裂症患者和9275名健康对照者。通过对大规模静息态功能磁共振成像数据集应用新型功能连接网络映射,我们将这些受影响的大脑位置映射到精神分裂症的3个大脑异常网络中:结果:精神分裂症的灰质萎缩网络由一组广泛分布的脑区组成,主要涉及腹侧注意网络、躯体运动网络和默认网络。神经认知功能障碍网络也由广泛分布的脑区组成,主要涉及额顶和缺省网络。与此相反,社会认知功能障碍网络由限定的脑区组成,主要涉及默认网络、皮层下网络和视觉网络:我们的研究结果表明,精神分裂症患者的灰质萎缩、神经认知和社会认知功能障碍具有共同和独特的脑网络基底,这不仅可以从网络的角度完善对疾病神经病理学的理解,还可能有助于对精神分裂症患者不同认知领域的障碍进行更有针对性和更有效的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain Network Localization of Gray Matter Atrophy and Neurocognitive and Social Cognitive Dysfunction in Schizophrenia.

Background: Numerous studies have established the presence of gray matter atrophy and brain activation abnormalities during neurocognitive and social cognitive tasks in schizophrenia. Despite a growing consensus that diseases localize better to distributed brain networks than individual anatomical regions, relatively few studies have examined brain network localization of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia.

Methods: To address this gap, we initially identified brain locations of structural and functional abnormalities in schizophrenia from 301 published neuroimaging studies with 8712 individuals with schizophrenia and 9275 healthy control participants. By applying novel functional connectivity network mapping to large-scale resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 brain abnormality networks of schizophrenia.

Results: The gray matter atrophy network of schizophrenia comprised a broadly distributed set of brain areas predominantly implicating the ventral attention, somatomotor, and default networks. The neurocognitive dysfunction network was also composed of widespread brain areas primarily involving the frontoparietal and default networks. By contrast, the social cognitive dysfunction network consisted of circumscribed brain regions mainly implicating the default, subcortical, and visual networks.

Conclusions: Our findings suggest shared and unique brain network substrates of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia, which may not only refine the understanding of disease neuropathology from a network perspective but may also contribute to more targeted and effective treatments for impairments in different cognitive domains in schizophrenia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Psychiatry
Biological Psychiatry 医学-精神病学
CiteScore
18.80
自引率
2.80%
发文量
1398
审稿时长
33 days
期刊介绍: Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信