Mohammad Reza Ezzati , Mohammad Javad Ezzati , Mojdeh Fattahi , Roghayeh Mozafari , Ronak Azizbeigi , Abbas Haghparast
{"title":"大麻二酚对甲基苯丙胺诱导的大鼠条件性位置偏好的抑制作用中,腹侧被盖区的 D1 类多巴胺受体所起的作用。","authors":"Mohammad Reza Ezzati , Mohammad Javad Ezzati , Mojdeh Fattahi , Roghayeh Mozafari , Ronak Azizbeigi , Abbas Haghparast","doi":"10.1016/j.brainresbull.2024.111038","DOIUrl":null,"url":null,"abstract":"<div><p>Cannabidiol (CBD) is a non-psychoactive drug extracted from marijuana. It is well established that CBD attenuates the reinforcing effects of drugs of abuse, although its mechanism of action is not fully understood. The current study tries to clarify the role of D1-like dopamine receptors (D1R) in the ventral tegmental area (VTA) in the inhibitory effects of the CBD on the acquisition and expression of methamphetamine (METH)-conditioned place preference (CPP). In the CPP training, adult male Wistar rats were conditioned with subcutaneous administration of METH (1 mg/kg) for five days. Three groups of animals were treated with multiple doses of SCH23390 (as a D1R antagonist; 0.25, 1, and 4 μg/0.3 μl saline) in the VTA, respectively, before intracerebroventricular (ICV) injection of CBD (10 μg/5 μl DMSO) in the acquisition phase. In the second experiment of the study, rats received SCH23390 in the VTA before ICV administration of CBD (50 μg/5 μl DMSO) in the expression of METH CPP. Here, the current study demonstrated that CBD inhibits the acquisition and expression of METH CPP, while microinjection of D1R antagonists (1 and 4 μg) into the VTA significantly reduced CBD’s suppressive effect on the acquisition and expression of METH place preference. Furthermore, this research demonstrated that either SCH23390 or CBD alone does not lead to place preference in the CPP paradigm. Based on these data, this study suggests that pharmacological manipulations of D1R may alter the CBD’s effect on METH-conditioned preference.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"216 ","pages":"Article 111038"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024001710/pdfft?md5=a866c70f25452c2da012923611160377&pid=1-s2.0-S0361923024001710-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The role of D1-like dopamine receptors within the ventral tegmental area in the cannabidiol’s inhibitory effects on the methamphetamine-induced conditioned place preference in rats\",\"authors\":\"Mohammad Reza Ezzati , Mohammad Javad Ezzati , Mojdeh Fattahi , Roghayeh Mozafari , Ronak Azizbeigi , Abbas Haghparast\",\"doi\":\"10.1016/j.brainresbull.2024.111038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cannabidiol (CBD) is a non-psychoactive drug extracted from marijuana. It is well established that CBD attenuates the reinforcing effects of drugs of abuse, although its mechanism of action is not fully understood. The current study tries to clarify the role of D1-like dopamine receptors (D1R) in the ventral tegmental area (VTA) in the inhibitory effects of the CBD on the acquisition and expression of methamphetamine (METH)-conditioned place preference (CPP). In the CPP training, adult male Wistar rats were conditioned with subcutaneous administration of METH (1 mg/kg) for five days. Three groups of animals were treated with multiple doses of SCH23390 (as a D1R antagonist; 0.25, 1, and 4 μg/0.3 μl saline) in the VTA, respectively, before intracerebroventricular (ICV) injection of CBD (10 μg/5 μl DMSO) in the acquisition phase. In the second experiment of the study, rats received SCH23390 in the VTA before ICV administration of CBD (50 μg/5 μl DMSO) in the expression of METH CPP. Here, the current study demonstrated that CBD inhibits the acquisition and expression of METH CPP, while microinjection of D1R antagonists (1 and 4 μg) into the VTA significantly reduced CBD’s suppressive effect on the acquisition and expression of METH place preference. Furthermore, this research demonstrated that either SCH23390 or CBD alone does not lead to place preference in the CPP paradigm. Based on these data, this study suggests that pharmacological manipulations of D1R may alter the CBD’s effect on METH-conditioned preference.</p></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":\"216 \",\"pages\":\"Article 111038\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001710/pdfft?md5=a866c70f25452c2da012923611160377&pid=1-s2.0-S0361923024001710-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001710\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024001710","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The role of D1-like dopamine receptors within the ventral tegmental area in the cannabidiol’s inhibitory effects on the methamphetamine-induced conditioned place preference in rats
Cannabidiol (CBD) is a non-psychoactive drug extracted from marijuana. It is well established that CBD attenuates the reinforcing effects of drugs of abuse, although its mechanism of action is not fully understood. The current study tries to clarify the role of D1-like dopamine receptors (D1R) in the ventral tegmental area (VTA) in the inhibitory effects of the CBD on the acquisition and expression of methamphetamine (METH)-conditioned place preference (CPP). In the CPP training, adult male Wistar rats were conditioned with subcutaneous administration of METH (1 mg/kg) for five days. Three groups of animals were treated with multiple doses of SCH23390 (as a D1R antagonist; 0.25, 1, and 4 μg/0.3 μl saline) in the VTA, respectively, before intracerebroventricular (ICV) injection of CBD (10 μg/5 μl DMSO) in the acquisition phase. In the second experiment of the study, rats received SCH23390 in the VTA before ICV administration of CBD (50 μg/5 μl DMSO) in the expression of METH CPP. Here, the current study demonstrated that CBD inhibits the acquisition and expression of METH CPP, while microinjection of D1R antagonists (1 and 4 μg) into the VTA significantly reduced CBD’s suppressive effect on the acquisition and expression of METH place preference. Furthermore, this research demonstrated that either SCH23390 or CBD alone does not lead to place preference in the CPP paradigm. Based on these data, this study suggests that pharmacological manipulations of D1R may alter the CBD’s effect on METH-conditioned preference.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.