{"title":"通过高通量自旋螺旋计算获得计算二维材料数据库 (C2DB) 中的磁序","authors":"Joachim Sødequist, Thomas Olsen","doi":"10.1038/s41524-024-01318-2","DOIUrl":null,"url":null,"abstract":"<p>We report high throughput computational screening for magnetic ground state order in 2D materials. The workflow is based on spin spiral calculations and yields the magnetic order in terms of a two-dimensional ordering vector <b>Q</b>. We then include spin-orbit coupling to extract the easy and hard axes for collinear structures and the orientation of spiral planes in non-collinear structures. Finally, for all predicted ferromagnets we compute the Dzyaloshinskii-Moriya interactions and determine whether or not these are strong enough to overcome the magnetic anisotropy and stabilise a chiral spin spiral ground state. We find 58 ferromagnets, 21 collinear anti-ferromagnets, and 85 non-collinear ground states of which 15 are chiral spin spirals driven by Dzyaloshinskii-Moriya interactions. The results show that non-collinear order is in fact as common as collinear order in these materials and emphasise the need for detailed investigation of the magnetic ground state when reporting magnetic properties of new materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"40 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic order in the computational 2D materials database (C2DB) from high throughput spin spiral calculations\",\"authors\":\"Joachim Sødequist, Thomas Olsen\",\"doi\":\"10.1038/s41524-024-01318-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We report high throughput computational screening for magnetic ground state order in 2D materials. The workflow is based on spin spiral calculations and yields the magnetic order in terms of a two-dimensional ordering vector <b>Q</b>. We then include spin-orbit coupling to extract the easy and hard axes for collinear structures and the orientation of spiral planes in non-collinear structures. Finally, for all predicted ferromagnets we compute the Dzyaloshinskii-Moriya interactions and determine whether or not these are strong enough to overcome the magnetic anisotropy and stabilise a chiral spin spiral ground state. We find 58 ferromagnets, 21 collinear anti-ferromagnets, and 85 non-collinear ground states of which 15 are chiral spin spirals driven by Dzyaloshinskii-Moriya interactions. The results show that non-collinear order is in fact as common as collinear order in these materials and emphasise the need for detailed investigation of the magnetic ground state when reporting magnetic properties of new materials.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01318-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01318-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Magnetic order in the computational 2D materials database (C2DB) from high throughput spin spiral calculations
We report high throughput computational screening for magnetic ground state order in 2D materials. The workflow is based on spin spiral calculations and yields the magnetic order in terms of a two-dimensional ordering vector Q. We then include spin-orbit coupling to extract the easy and hard axes for collinear structures and the orientation of spiral planes in non-collinear structures. Finally, for all predicted ferromagnets we compute the Dzyaloshinskii-Moriya interactions and determine whether or not these are strong enough to overcome the magnetic anisotropy and stabilise a chiral spin spiral ground state. We find 58 ferromagnets, 21 collinear anti-ferromagnets, and 85 non-collinear ground states of which 15 are chiral spin spirals driven by Dzyaloshinskii-Moriya interactions. The results show that non-collinear order is in fact as common as collinear order in these materials and emphasise the need for detailed investigation of the magnetic ground state when reporting magnetic properties of new materials.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.