Ni Zhang , Rui Qiu , Zhongwei Zhao , Bingzhen Zhao , Shichao Wang
{"title":"基于随机数值模型的随机几何缺陷对脚手架承载能力的影响","authors":"Ni Zhang , Rui Qiu , Zhongwei Zhao , Bingzhen Zhao , Shichao Wang","doi":"10.1016/j.advengsoft.2024.103737","DOIUrl":null,"url":null,"abstract":"<div><p>The existing data indicate that two-thirds of engineering accidents occur during construction among which engineering accidents caused by scaffold collapse account for a large proportion. Due to the complex mechanical behavior of connection and random nature of scaffold system caused by random geometrical imperfection, the reliability of scaffold system is lower than other kinds of building structures. However, the method considering the random geometrical imperfection is limited. To facilitate the analysis of random geometrical imperfection, the original numerical algorithm is proposed based on ANSYS Parametric Design Language. Through proposed method, two types of geometrical imperfections, i.e., the nodal location error and initial curvature can be automatically considered. The randomness in initial curvature includes random magnitude and random direction. The established numerical model is as close to reality as possible and the process of establishing stochastic numerical model can be automatically finished. The only work that needs to be done is to enter the dimensions of the scaffold. Except the propose of numerical algorithm, the objective of this study is to reveal the influence of geometrical imperfection on random distribution of loading capacity of scaffold system under different load conditions. The influence of random geometrical imperfection on probabilistic distribution of loading capacity is systematically investigated. The results indicated that there may be several buckling modes exist and the buckling mode occurred in actual condition is closely related to the random distribution of geometrical imperfection. The load factor of internal post (point 3) is 8 %–12 % larger than that of corner post. The load factor of side post is 4.7 %–7.2 % larger than that of corner post. The ultimate bending capacity <em>M</em><sub>u</sub> has little influence on the loading capacity of scaffold system when the initial bending stiffness <em>k</em><sub>o</sub> is small enough.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"197 ","pages":"Article 103737"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of random geometrical imperfection on loading capacity of scaffold based on stochastic numerical model\",\"authors\":\"Ni Zhang , Rui Qiu , Zhongwei Zhao , Bingzhen Zhao , Shichao Wang\",\"doi\":\"10.1016/j.advengsoft.2024.103737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The existing data indicate that two-thirds of engineering accidents occur during construction among which engineering accidents caused by scaffold collapse account for a large proportion. Due to the complex mechanical behavior of connection and random nature of scaffold system caused by random geometrical imperfection, the reliability of scaffold system is lower than other kinds of building structures. However, the method considering the random geometrical imperfection is limited. To facilitate the analysis of random geometrical imperfection, the original numerical algorithm is proposed based on ANSYS Parametric Design Language. Through proposed method, two types of geometrical imperfections, i.e., the nodal location error and initial curvature can be automatically considered. The randomness in initial curvature includes random magnitude and random direction. The established numerical model is as close to reality as possible and the process of establishing stochastic numerical model can be automatically finished. The only work that needs to be done is to enter the dimensions of the scaffold. Except the propose of numerical algorithm, the objective of this study is to reveal the influence of geometrical imperfection on random distribution of loading capacity of scaffold system under different load conditions. The influence of random geometrical imperfection on probabilistic distribution of loading capacity is systematically investigated. The results indicated that there may be several buckling modes exist and the buckling mode occurred in actual condition is closely related to the random distribution of geometrical imperfection. The load factor of internal post (point 3) is 8 %–12 % larger than that of corner post. The load factor of side post is 4.7 %–7.2 % larger than that of corner post. The ultimate bending capacity <em>M</em><sub>u</sub> has little influence on the loading capacity of scaffold system when the initial bending stiffness <em>k</em><sub>o</sub> is small enough.</p></div>\",\"PeriodicalId\":50866,\"journal\":{\"name\":\"Advances in Engineering Software\",\"volume\":\"197 \",\"pages\":\"Article 103737\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965997824001443\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824001443","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Influence of random geometrical imperfection on loading capacity of scaffold based on stochastic numerical model
The existing data indicate that two-thirds of engineering accidents occur during construction among which engineering accidents caused by scaffold collapse account for a large proportion. Due to the complex mechanical behavior of connection and random nature of scaffold system caused by random geometrical imperfection, the reliability of scaffold system is lower than other kinds of building structures. However, the method considering the random geometrical imperfection is limited. To facilitate the analysis of random geometrical imperfection, the original numerical algorithm is proposed based on ANSYS Parametric Design Language. Through proposed method, two types of geometrical imperfections, i.e., the nodal location error and initial curvature can be automatically considered. The randomness in initial curvature includes random magnitude and random direction. The established numerical model is as close to reality as possible and the process of establishing stochastic numerical model can be automatically finished. The only work that needs to be done is to enter the dimensions of the scaffold. Except the propose of numerical algorithm, the objective of this study is to reveal the influence of geometrical imperfection on random distribution of loading capacity of scaffold system under different load conditions. The influence of random geometrical imperfection on probabilistic distribution of loading capacity is systematically investigated. The results indicated that there may be several buckling modes exist and the buckling mode occurred in actual condition is closely related to the random distribution of geometrical imperfection. The load factor of internal post (point 3) is 8 %–12 % larger than that of corner post. The load factor of side post is 4.7 %–7.2 % larger than that of corner post. The ultimate bending capacity Mu has little influence on the loading capacity of scaffold system when the initial bending stiffness ko is small enough.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.