Juan Du, Xia Li, Na Liu, Yuan Wang, Yaqian Li, Yang Jia, Xiaoping An, Jingwei Qi
{"title":"通过固态发酵提高甘草茎叶的质量:黄酮含量、抗氧化活性、代谢概况和释放机制","authors":"Juan Du, Xia Li, Na Liu, Yuan Wang, Yaqian Li, Yang Jia, Xiaoping An, Jingwei Qi","doi":"10.1186/s40538-024-00631-8","DOIUrl":null,"url":null,"abstract":"<div><p><i>Glycyrrhiza</i> stems and leaves (GSL) are waste products of <i>Glycyrrhiza</i>; however, it has been considered a potential source of flavonoid compounds. In this study, GSL was processed by solid-state fermentation (SSF) to improve the flavonoid content and antioxidant activity. Firstly, a near-infrared (NIR) prediction model for flavonoid content in fermented <i>Glycyrrhiza</i> stems and leaves (FGSL) was established. Next, the effects of SSF on the antioxidant activity and metabolite profile of GSL were investigated. Finally, the possible mechanism of ferment release of flavonoids was explored based on enzyme activity, thermogravimetric analysis, and FTIR spectroscopy. The results revealed that NIR spectroscopy can efficiently analyze flavonoid contents in GSL, with predicted determination coefficient (Rp<sup>2</sup>) and root mean square error (RMSEP) of 0.9874 and 0.125, respectively. SSF significantly increased the levels of flavonoids, and enhanced the scavenging activities of DPPH radical and hydroxyl radical and reducing power of FGSL. Widely targeted metabolomic analysis showed the detection of 461 differential metabolites were identified after SSF, with 141 metabolites remarkably up-regulated and 320 metabolites of FGSL down-regulated during fermentation. The main types of differential metabolites were phenolic acids and flavonoids, and the destruction of cellulose by SFF was crucial to the release of flavonoids. In conclusion, our study revealed that SSF remarkably improved the phytochemical components of FGSL by increasing enzyme activity and destroying cellulose structure, thereby contributing to the enhancement of antioxidant activity. This study provided a scientific basis for the production of high-value flavonoids from plant materials and offered a novel approach to elucidate the release and conversion of flavonoids.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00631-8","citationCount":"0","resultStr":"{\"title\":\"Improving the quality of Glycyrrhiza stems and leaves through solid-state fermentation: flavonoid content, antioxidant activity, metabolic profile, and release mechanism\",\"authors\":\"Juan Du, Xia Li, Na Liu, Yuan Wang, Yaqian Li, Yang Jia, Xiaoping An, Jingwei Qi\",\"doi\":\"10.1186/s40538-024-00631-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Glycyrrhiza</i> stems and leaves (GSL) are waste products of <i>Glycyrrhiza</i>; however, it has been considered a potential source of flavonoid compounds. In this study, GSL was processed by solid-state fermentation (SSF) to improve the flavonoid content and antioxidant activity. Firstly, a near-infrared (NIR) prediction model for flavonoid content in fermented <i>Glycyrrhiza</i> stems and leaves (FGSL) was established. Next, the effects of SSF on the antioxidant activity and metabolite profile of GSL were investigated. Finally, the possible mechanism of ferment release of flavonoids was explored based on enzyme activity, thermogravimetric analysis, and FTIR spectroscopy. The results revealed that NIR spectroscopy can efficiently analyze flavonoid contents in GSL, with predicted determination coefficient (Rp<sup>2</sup>) and root mean square error (RMSEP) of 0.9874 and 0.125, respectively. SSF significantly increased the levels of flavonoids, and enhanced the scavenging activities of DPPH radical and hydroxyl radical and reducing power of FGSL. Widely targeted metabolomic analysis showed the detection of 461 differential metabolites were identified after SSF, with 141 metabolites remarkably up-regulated and 320 metabolites of FGSL down-regulated during fermentation. The main types of differential metabolites were phenolic acids and flavonoids, and the destruction of cellulose by SFF was crucial to the release of flavonoids. In conclusion, our study revealed that SSF remarkably improved the phytochemical components of FGSL by increasing enzyme activity and destroying cellulose structure, thereby contributing to the enhancement of antioxidant activity. This study provided a scientific basis for the production of high-value flavonoids from plant materials and offered a novel approach to elucidate the release and conversion of flavonoids.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00631-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-024-00631-8\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00631-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving the quality of Glycyrrhiza stems and leaves through solid-state fermentation: flavonoid content, antioxidant activity, metabolic profile, and release mechanism
Glycyrrhiza stems and leaves (GSL) are waste products of Glycyrrhiza; however, it has been considered a potential source of flavonoid compounds. In this study, GSL was processed by solid-state fermentation (SSF) to improve the flavonoid content and antioxidant activity. Firstly, a near-infrared (NIR) prediction model for flavonoid content in fermented Glycyrrhiza stems and leaves (FGSL) was established. Next, the effects of SSF on the antioxidant activity and metabolite profile of GSL were investigated. Finally, the possible mechanism of ferment release of flavonoids was explored based on enzyme activity, thermogravimetric analysis, and FTIR spectroscopy. The results revealed that NIR spectroscopy can efficiently analyze flavonoid contents in GSL, with predicted determination coefficient (Rp2) and root mean square error (RMSEP) of 0.9874 and 0.125, respectively. SSF significantly increased the levels of flavonoids, and enhanced the scavenging activities of DPPH radical and hydroxyl radical and reducing power of FGSL. Widely targeted metabolomic analysis showed the detection of 461 differential metabolites were identified after SSF, with 141 metabolites remarkably up-regulated and 320 metabolites of FGSL down-regulated during fermentation. The main types of differential metabolites were phenolic acids and flavonoids, and the destruction of cellulose by SFF was crucial to the release of flavonoids. In conclusion, our study revealed that SSF remarkably improved the phytochemical components of FGSL by increasing enzyme activity and destroying cellulose structure, thereby contributing to the enhancement of antioxidant activity. This study provided a scientific basis for the production of high-value flavonoids from plant materials and offered a novel approach to elucidate the release and conversion of flavonoids.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.