{"title":"多器官生物年龄表明,任何器官系统都不是一座孤岛。","authors":"","doi":"10.1038/s43587-024-00690-4","DOIUrl":null,"url":null,"abstract":"In our study, we linked machine-learning-derived biological age gaps (BAGs) to common genetic variants in nine human organ systems, which revealed how these BAGs are causally associated with organ health and chronic diseases such as Alzheimer’s disease and diabetes. The findings provide insights into therapeutic and lifestyle interventions that might enhance organ health.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"4 9","pages":"1182-1183"},"PeriodicalIF":17.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiorgan biological age shows that no organ system is an island\",\"authors\":\"\",\"doi\":\"10.1038/s43587-024-00690-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our study, we linked machine-learning-derived biological age gaps (BAGs) to common genetic variants in nine human organ systems, which revealed how these BAGs are causally associated with organ health and chronic diseases such as Alzheimer’s disease and diabetes. The findings provide insights into therapeutic and lifestyle interventions that might enhance organ health.\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\"4 9\",\"pages\":\"1182-1183\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43587-024-00690-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00690-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Multiorgan biological age shows that no organ system is an island
In our study, we linked machine-learning-derived biological age gaps (BAGs) to common genetic variants in nine human organ systems, which revealed how these BAGs are causally associated with organ health and chronic diseases such as Alzheimer’s disease and diabetes. The findings provide insights into therapeutic and lifestyle interventions that might enhance organ health.