多器官生物年龄表明,任何器官系统都不是一座孤岛。

IF 17 Q1 CELL BIOLOGY
{"title":"多器官生物年龄表明,任何器官系统都不是一座孤岛。","authors":"","doi":"10.1038/s43587-024-00690-4","DOIUrl":null,"url":null,"abstract":"In our study, we linked machine-learning-derived biological age gaps (BAGs) to common genetic variants in nine human organ systems, which revealed how these BAGs are causally associated with organ health and chronic diseases such as Alzheimer’s disease and diabetes. The findings provide insights into therapeutic and lifestyle interventions that might enhance organ health.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"4 9","pages":"1182-1183"},"PeriodicalIF":17.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiorgan biological age shows that no organ system is an island\",\"authors\":\"\",\"doi\":\"10.1038/s43587-024-00690-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our study, we linked machine-learning-derived biological age gaps (BAGs) to common genetic variants in nine human organ systems, which revealed how these BAGs are causally associated with organ health and chronic diseases such as Alzheimer’s disease and diabetes. The findings provide insights into therapeutic and lifestyle interventions that might enhance organ health.\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\"4 9\",\"pages\":\"1182-1183\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43587-024-00690-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00690-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在我们的研究中,我们将机器学习得出的生物年龄差距(BAG)与九个人体器官系统中的常见基因变异联系起来,揭示了这些生物年龄差距与器官健康以及阿尔茨海默病和糖尿病等慢性疾病之间的因果关系。这些发现为可能增强器官健康的治疗和生活方式干预提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiorgan biological age shows that no organ system is an island

Multiorgan biological age shows that no organ system is an island

Multiorgan biological age shows that no organ system is an island
In our study, we linked machine-learning-derived biological age gaps (BAGs) to common genetic variants in nine human organ systems, which revealed how these BAGs are causally associated with organ health and chronic diseases such as Alzheimer’s disease and diabetes. The findings provide insights into therapeutic and lifestyle interventions that might enhance organ health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信